17,455 research outputs found

    Maternal haemodynamic function differs in pre‐eclampsia when it is associated with a small‐for‐gestational‐age newborn: a prospective cohort study

    Get PDF
    Objective To describe maternal haemodynamic differences in gestational hypertension with small‐for‐gestational‐age babies (HDP + SGA), gestational hypertension with appropriate‐for‐gestational‐age babies (HDP‐only) and control pregnancies. Design Prospective cohort study. Setting Tertiary Hospital, UK. Population Women with gestational hypertension and healthy pregnant women. Methods Maternal haemodynamic indices were measured using a non‐invasive Ultrasound Cardiac Output Monitor (USCOM‐1A¼) and corrected for gestational age and maternal characteristics using device‐specific reference ranges. Main outcome measures Maternal cardiac output, stroke volume, systemic vascular resistance. Results We included 114 HDP + SGA, 202 HDP‐only and 401 control pregnancies at 26–41 weeks of gestation. There was no significant difference in the mean arterial blood pressure (110 versus 107 mmHg, P = 0.445) between the two HDP groups at presentation. Pregnancies complicated by HDP + SGA had significantly lower median heart rate (76 versus 85 bpm versus 83 bpm), lower cardiac output (0.85 versus 0.98 versus 0.97 MoM) and higher systemic vascular resistance (1.4 versus 1.0 versus 1.2 MoM) compared with control and HDP‐only pregnancies, respectively (all P < 0.05). Conclusion Women with HDP + SGA present with more severe haemodynamic dysfunction than HDP‐only. Even HDP‐only pregnancies exhibit impaired haemodynamic indices compared with normal pregnancies, supporting a role of the maternal cardiovascular system in gestational hypertension irrespective of fetal size. Central haemodynamic changes may play a role in the pathogenesis of pre‐eclampsia and should be considered alongside placental aetiology

    Anisotropy in nanocellular polymers promoted by the addition of needle‐like sepiolites

    Get PDF
    This work presents a new strategy for obtaining nanocellular materials with high anisotropy ratios by means of the addition of needle‐like nanoparticles. Nanocellular polymers are of great interest due to their outstanding properties, whereas anisotropic structures allow the realization of improved thermal and mechanical properties in certain directions. Nanocomposites based on poly(methyl methacrylate) (PMMA) with nanometric sepiolites are generated by extrusion. From the extruded filaments, cellular materials are produced using a two‐step gas dissolution foaming method. The effect of adding various types and contents of sepiolites is investigated. As a result of the extrusion process, the needle‐like sepiolites are aligned in the machine direction in the solid nanocomposites. Regarding the cellular materials, the addition of sepiolites allows one to obtain anisotropic nanocellular polymers with cell sizes of 150 to 420 nm and cell nucleation densities of 1013–1014 nuclei cm−3 and presenting anisotropy ratios ranging from 1.38 to 2.15, the extrusion direction being the direction of the anisotropy. To explain the appearance of anisotropy, a mechanism based on cell coalescence is proposed and discussed. In addition, it is shown that it is possible to control the anisotropy ratio of the PMMA/sepiolite nanocellular polymers by changing the amount of well‐dispersed sepiolites in the solid nanocomposites

    Mechanical and hygrothermal properties of hemp-silica bio-composites

    Get PDF
    This research investigated the development of a fast-drying silica-based binder for hemp concrete products with enhanced mechanical and thermal properties. Hemp-silica bio-composites were prepared by mixing hemp shivs with a two-component binder system composed of liquid sodium silicate and tributyl citrate (TBC). Compressive strength, thermal conductivity, moisture buffering value, cyclic moisture resistance and microstructure of hemp-silica composites were analysed, and the results were compared with those of hemp-lime concrete. Hemp-silica blocks with shiv-liquid sodium silicate mass ratio of 1:3.75 and TBC content of 37.5 wt% of sodium silicate dry matter produced a compressive strength of 0.56 MPa only after 3 days of drying and 1.92 MPa after 28 days. These were higher than hemp-lime blocks at the same density range. Hemp-silica panels showed a thermal conductivity of 0.101 W/mK and an excellent moisture buffering value of 3.49. Hemp silica formed an open porosity with large air gaps between the particles and a water-resistance silica-based layer on the shiv surface producing a higher moisture resistance compared to hemp-lime systems. This paper focuses on the development of a novel fast-drying binder system with a potential for use in conjunction with other lingnocellular plant aggregates to form low-carbon and efficient multifunctional building materials

    Generation of two-photon states with arbitrary degree of entanglement via nonlinear crystal superlattices

    Get PDF
    We demonstrate a general method of engineering the joint quantum state of photon pairs produced in spontaneous parametric downconversion (PDC). The method makes use of a superlattice structure of nonlinear and linear materials, in conjunction with a broadband pump, to manipulate the group delays of the signal and idler photons relative to the pump pulse, and realizes a joint spectral amplitude with arbitrary degree of entanglement for the generated pairs. This method of group delay engineering has the potential of synthesizing a broad range of states including factorizable states crucial for quantum networking and states optimized for Hong-Ou-Mandel interferometry. Experimental results for the latter case are presented, illustrating the principles of this approach.Comment: 4 pages, 4 figures, accepted Phys. Rev. Let

    Potassium condensing tests of horizontal multitube convective and radiative condensers operating at vapor temperatures of 1250 deg to 1500 deg F

    Get PDF
    Potassium condensing tests of horizontal multitube convective and radiative condenser operating at vapor temperature

    Perception of material appearance:Aa comparison between painted and rendered images

    Get PDF
    Painters are masters in replicating the visual appearance of materials.While the perception of material appearance is not yet fully understood, painters seem to have acquired an implicit understanding of the key visual cues that we need to accurately perceive material properties. In this study, we directly compare the perception of material properties in paintings and in renderings by collecting professional realistic paintings of rendered materials. From both type of images, we collect human judgments of material properties and compute a variety of image features that are known to reflect material properties. Our study reveals that, despite important visual differences between the two types of depiction, material properties in paintings and renderings are perceived very similarly and are linked to the same image features. This suggests that we use similar visual cues independently of the medium and that the presence of such cues is sufficient to provide a good appearance perception of the materials. Copyright 2021 The Author

    Perception of Material Appearance: {A} Comparison between Painted and Rendered Images

    Get PDF

    Standardized experimental estimation of the maximum unnoticeable environmental displacement during eye blinks for redirect walking in virtual reality

    Get PDF
    Redirect walking is a technique that aims to manipulate the walking trajectories in immersive virtual reality settings by inducing unnoticeable displacements of the virtual environment. Taking into advantage the change blindness phenomenon, visual occlusion during eye blinks has been recently proposed to perform those displacements. This study determined the maximum unnoticeable displacement that can be performed in practical scenario, which proved to be near 0.8° of occlusion and disocclusion in both horizontal and vertical axes
    • 

    corecore