3,142 research outputs found

    William (Bill) Peterson's contributions to ocean science, management, and policy

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Schwing, F. B., Sissenwine, M. J., Batchelder, H., Dam, H. G., Gomez-Gutierrez, J., Keister, J. E., Liu, H., & Peterson, J. O. William (Bill) Peterson's contributions to ocean science, management, and policy. Progress in Oceanography, 182, (2020): 102241, doi:10.1016/j.pocean.2019.102241.In addition to being an esteemed marine ecologist and oceanographer, William T. (Bill) Peterson was a dedicated public servant, a leader in the ocean science community, and a mentor to a generation of scientists. Bill recognized the importance of applied science and the need for integrated “big science” programs to advance our understanding of ecosystems and to guide their management. As the first US GLOBEC program manager, he was pivotal in transitioning the concept of understanding how climate change impacts marine ecosystems to an operational national research program. The scientific insight and knowledge generated by US GLOBEC informed and advanced the ecosystem-based management approaches now being implemented for fishery management in the US. Bill held significant leadership roles in numerous international efforts to understand global and regional ecological processes, and organized and chaired a number of influential scientific conferences and their proceedings. He was passionate about working with and training young researchers. Bill’s academic affiliations, notably at Stony Brook and Oregon State Universities, enabled him to advise, train, and mentor a host of students, post-doctoral researchers, and laboratory technicians. Under his collegial guidance they became critical independent thinkers and diligent investigators. His former students and colleagues carry on Bill Peterson’s legacy of research that helps us understand marine ecosystems and informs more effective resource stewardship and conservation

    Electronic structure of crystalline binary and ternary Cd-Te-O compounds

    Full text link
    The electronic structure of crystalline CdTe, CdO, α\alpha-TeO2_2, CdTeO3_3 and Cd3_3TeO6_6 is studied by means of first principles calculations. The band structure, total and partial density of states, and charge densities are presented. For α\alpha-TeO2_2 and CdTeO3_3, Density Functional Theory within the Local Density Approximation (LDA) correctly describes the insulating character of these compounds. In the first four compounds, LDA underestimates the optical bandgap by roughly 1 eV. Based on this trend, we predict an optical bandgap of 1.7 eV for Cd3_3TeO6_6. This material shows an isolated conduction band with a low effective mass, thus explaining its semiconducting character observed recently. In all these oxides, the top valence bands are formed mainly from the O 2p electrons. On the other hand, the binding energy of the Cd 4d band, relative to the valence band maximum, in the ternary compounds is smaller than in CdTe and CdO.Comment: 13 pages, 15 figures, 2 tables. Accepted in Phys Rev

    Dynamical bi-stability of single-molecule junctions: A combined experimental/theoretical study of PTCDA on Ag(111)

    Get PDF
    The dynamics of a molecular junction consisting of a PTCDA molecule between the tip of a scanning tunneling microscope and a Ag(111) surface have been investigated experimentally and theoretically. Repeated switching of a PTCDA molecule between two conductance states is studied by low-temperature scanning tunneling microscopy for the first time, and is found to be dependent on the tip-substrate distance and the applied bias. Using a minimal model Hamiltonian approach combined with density-functional calculations, the switching is shown to be related to the scattering of electrons tunneling through the junction, which progressively excite the relevant chemical bond. Depending on the direction in which the molecule switches, different molecular orbitals are shown to dominate the transport and thus the vibrational heating process. This in turn can dramatically affect the switching rate, leading to non-monotonic behavior with respect to bias under certain conditions. In this work, rather than simply assuming a constant density of states as in previous works, it was modeled by Lorentzians. This allows for the successful description of this non-monotonic behavior of the switching rate, thus demonstrating the importance of modeling the density of states realistically.Comment: 20 pages, 6 figures, 1 tabl

    Analysis of Turkish swordfish (Xiphias gladius) catch rates in the eastern Mediterranean

    Get PDF
    Indices of abundance of swordfish (Xiphias gladius) from the Turkish gillnet and longline fisheries operating in the eastern Mediterranean are presented for the period 2008-2013. Annual standardized indices were estimated by means of Generalized Linear Modeling techniques and the predictor variables included the Year and, Month of sampling. Gillnet CPUE data suggested the presence of and increasing abundance trend over the period 2008- 2010, while not any particular trend was identified from the analysis of the longline data set.Versión del edito

    Annual distribution of the Sun’s angular positions, study at 21 degrees of latitude

    Get PDF
    Por experiencia sabemos que la posición del Sol, relativa a un observador situado sobre la superficie de la Tierra, cambia según el día del año y la latitud en la que se encuentra dicho observador. En general, el Sol describe, en la bóveda celeste, una trayectoria diferente para cada día del año que está determinada por los ángulos del azimut y del zenit. El cálculo analítico para determinar la posición angular en cualquier momento (hora solar) resulta ser una tarea abrumadora. En el lenguaje de programación del software Mathematica®, desarrollamos un código que nos permite determinar, con precisión temporal de 60 segundos (1 minuto), y para cualquier latitud, los ángulos del azimut y del zenit que determinan la posición del Sol a lo largo de un año. Con el propósito de presentar resultados de interés en situaciones prácticas, en este trabajo estudiamos resultados de la distribución anual de las posiciones angulares y las horas de luz en la latitud 21 grados (correspondiente a la Ciudad de Mérida). Los resultados muestran que el Sol sigue trayectorias con inclinación hacia el norte para días de más de 12 horas de luz solar, y hacia el sur para días de menos de 12 horas de luz solar. La información que se presenta puede utilizarse en diversas situaciones, por ejemplo, para un aprovechamiento óptimo de las horas de luz de colectores solares, sistemas autónomos de seguimiento solar, ubicación y orientación de paneles solares, así como para el diseño y orientación espacial de casas habitación en las que se desee que la radiación solar incida de manera parcial sobre paredes verticales y aumentar el confort térmico.It is well know that the Sun position, measured over the heart surface is a function of the latitude and the hour of a particular day. Usually, the Sun follows a different path from one day to the next, and this is determined by the azimuth and zenith angles. The analytical calculations for determining the angular position at any time (solar hour) are an overwhelming task. We use the Mathematica® software to write a home code for determining at any time (in intervals of one minute) and latitude, the azimuth and zenith angles of the Sun for every day of the year. In order to show general results of interest, in this work we present the annual distribution of the angular positions and the length of the day (hours of light) for the 21 degrees of latitude. This information could be used for optimizing the orientation of solar panels and collectors and for the design of cheap houses where the walls can be exposed to the minimal solar incidence.Peer Reviewe

    Global W2,pW^{2,p} estimates for solutions to the linearized Monge--Amp\`ere equations

    Full text link
    In this paper, we establish global W2,pW^{2,p} estimates for solutions to the linearized Monge-Amp\`ere equations under natural assumptions on the domain, Monge-Amp\`ere measures and boundary data. Our estimates are affine invariant analogues of the global W2,pW^{2,p} estimates of Winter for fully nonlinear, uniformly elliptic equations, and also linearized counterparts of Savin's global W2,pW^{2,p} estimates for the Monge-Amp\`ere equations.Comment: v2: presentation improve

    Limits on the Dipole Moments of the τ\tau-Lepton via the Process $e^{+}e^{-}\to \tau^+ \tau^- \gamma in a Left-Right Symmetric Model

    Full text link
    Limits on the anomalous magnetic moment and the electric dipole moment of the τ\tau lepton are calculated through the reaction e+eτ+τγe^{+}e^{-}\to \tau^+ \tau^- \gamma at the Z1Z_1-pole and in the framework of a left-right symmetric model. The results are based on the recent data reported by the L3 Collaboration at CERN LEP. Due to the stringent limit of the model mixing angle ϕ\phi, the effect of this angle on the dipole moments is quite small.Comment: 15 pages, 3 figure
    corecore