155 research outputs found

    Vaccine-associated enhanced disease : case definition and guidelines for data collection, analysis, and presentation of immunization safety data

    Get PDF
    This is a Brighton Collaboration Case Definition of the term & ldquo;Vaccine Associated Enhanced Disease & rdquo; to be utilized in the evaluation of adverse events following immunization. The Case Definition was developed by a group of experts convened by the Coalition for Epidemic Preparedness Innovations (CEPI) in the context of active development of vaccines for SARS-CoV-2 vaccines and other emerging pathogens. The case definition format of the Brighton Collaboration was followed to develop a consensus definition and defined levels of certainty, after an exhaustive review of the literature and expert consultation. The document underwent peer review by the Brighton Collaboration Network and by selected Expert Reviewers prior to submission. (c) 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

    Nanolitre real-time PCR detection of bacterial, parasitic, and viral agents from patients with diarrhoea in Nunavut, Canada

    Get PDF
    Background. Little is known about the microbiology of diarrhoeal disease in Canada's Arctic regions. There are a number of limitations of conventional microbiology testing techniques for diarrhoeal pathogens, and these may be further compromised in the Arctic, given the often long distances for specimen transport. Objective. To develop a novel multiple-target nanolitre real-time reverse transcriptase (RT)-PCR platform to simultaneously test diarrhoeal specimens collected from residents of the Qikiqtani (Baffin Island) Region of Nunavut, Canada, for a wide range of bacterial, parasitic and viral agents. Study design/methods. Diarrhoeal stool samples submitted for bacterial culture to Qikiqtani General Hospital in Nunavut over an 18-month period were tested with a multiple-target nanolitre real-time PCR panel for major diarrhoeal pathogens including 8 bacterial, 6 viral and 2 parasitic targets. Results. Among 86 stool specimens tested by PCR, a total of 50 pathogens were detected with 1 or more pathogens found in 40 (46.5%) stool specimens. The organisms detected comprised 17 Cryptosporidium spp., 5 Clostridium difficile with toxin B, 6 Campylobacter spp., 6 Salmonella spp., 4 astroviruses, 3 noroviruses, 1 rotavirus, 1 Shigella spp. and 1 Giardia spp. The frequency of detection by PCR and bacterial culture was similar for Salmonella spp., but discrepant for Campylobacter spp., as Campylobacter was detected by culture from only 1/86 specimens. Similarly, Cryptosporidium spp. was detected in multiple samples by PCR but was not detected by microscopy or enzyme immunoassay. Conclusions. Cryptosporidium spp., Campylobacter spp. and Clostridium difficile may be relatively common but possibly under-recognised pathogens in this region. Further study is needed to determine the regional epidemiology and clinical significance of these organisms. This method appears to be a useful tool for gastrointestinal pathogen research and may also be helpful for clinical diagnostics and outbreak investigation in remote regions where the yield of routine testing may be compromised

    Breastfeeding and the risk of rotavirus diarrhea in hospitalized infants in Uganda: a matched case control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Rotavirus </it>is responsible for over 25 million outpatient visits, over 2 million hospitalizations and 527,000 deaths annually, worldwide. It is estimated that breastfeeding in accordance with the World Health Organization recommendations would save 1.45 million children's lives each year in the developing countries. The few studies that examined the effect of breastfeeding on <it>rotavirus </it>diarrhea produced conflicting results. This study aimed to determine the effect of breastfeeding on <it>rotavirus </it>diarrhea among admitted infants in Uganda.</p> <p>Methods</p> <p>The study was conducted in the Pediatrics medical emergency unit of a National Referral hospital during a peak incidence time for rotavirus from February to April 2008. It was an age matched case-control study with a ratio of 1:1. We consecutively enrolled infants presenting at the study site during this period whose caretakers consented to participate in the study. A minimum sample size of 90 pairs was adequate with power of 80% to detect a 30% decrease in breastfeeding rate among the cases assuming a breastfeeding rate of 80% in the controls. The infants with <it>rotavirus </it>positive results were the "cases". We used the commercial enzyme immunoassay kit (DAKO IDEIA™ rotavirus EIA detection kit) to diagnose the cases. The "controls" were admitted children with no diarrhea. We compared the cases and controls for antecedent breastfeeding patterns.</p> <p>Results</p> <p>Ninety-one matched case-control age-matched pairs with an age caliper of one month were included in the analysis. Breastfeeding was not protective against rotavirus diarrhea (OR 1.08: 95% CI 0.52 - 2.25; p = 0.8) in the conditional logistic model.</p> <p>Conclusions</p> <p>Our study findings did not reveal breastfeeding as protective against <it>rotavirus </it>diarrhea in infants. This suggests searching for other complementary preventive methods such as rotavirus vaccination and zinc supplementation to reduce the problem of <it>rotavirus </it>diarrhea in infants irrespective of their feeding practices.</p

    Defining the interval for monitoring potential adverse events following immunization (AEFIs) after receipt of live viral vectored vaccines

    Get PDF
    Live viral vectors that express heterologous antigens of the target pathogen are being investigated in the development of novel vaccines against serious infectious agents like HIV and Ebola. As some live recombinant vectored vaccines may be replication-competent, a key challenge is defining the length of time for monitoring potential adverse events following immunization (AEFI) in clinical trials and epidemiologic studies. This time period must be chosen with care and based on considerations of pre-clinical and clinical trials data, biological plausibility and practical feasibility. The available options include: (1) adapting from the current relevant regulatory guidelines; (2) convening a panel of experts to review the evidence from a systematic literature search to narrow down a list of likely potential or known AEFI and establish the optimal risk window(s); and (3) conducting “near real-time“ prospective monitoring for unknown clustering's of AEFI in validated large linked vaccine safety databases using Rapid Cycle Analysis for pre-specified adverse events of special interest (AESI) and Treescan to identify previously unsuspected outcomes. The risk window established by any of these options could be used along with (4) establishing a registry of clinically validated pre-specified AESI to include in case-control studies. Depending on the infrastructure, human resources and databases available in different countries, the appropriate option or combination of options can be determined by regulatory agencies and investigators

    Defining the interval for monitoring potential adverse events following immunization (AEFIs) after receipt of live viral vectored vaccines

    Get PDF
    Live viral vectors that express heterologous antigens of the target pathogen are being investigated in the development of novel vaccines against serious infectious agents like HIV and Ebola. As some live recombinant vectored vaccines may be replication-competent, a key challenge is defining the length of time for monitoring potential adverse events following immunization (AEFI) in clinical trials and epidemiologic studies. This time period must be chosen with care and based on considerations of pre-clinical and clinical trials data, biological plausibility and practical feasibility. The available options include: (1) adapting from the current relevant regulatory guidelines; (2) convening a panel of experts to review the evidence from a systematic literature search to narrow down a list of likely potential or known AEFI and establish the optimal risk window(s); and (3) conducting “near real-time“ prospective monitoring for unknown clustering's of AEFI in validated large linked vaccine safety databases using Rapid Cycle Analysis for pre-specified adverse events of special interest (AESI) and Treescan to identify previously unsuspected outcomes. The risk window established by any of these options could be used along with (4) establishing a registry of clinically validated pre-specified AESI to include in case-control studies. Depending on the infrastructure, human resources and databases available in different countries, the appropriate option or combination of options can be determined by regulatory agencies and investigators

    Pre-Clinical Evaluation of a Replication-Competent Recombinant Adenovirus Serotype 4 Vaccine Expressing Influenza H5 Hemagglutinin

    Get PDF
    Influenza virus remains a significant health and social concern in part because of newly emerging strains, such as avian H5N1 virus. We have developed a prototype H5N1 vaccine using a recombinant, replication-competent Adenovirus serotype 4 (Ad4) vector, derived from the U.S. military Ad4 vaccine strain, to express the hemagglutinin (HA) gene from A/Vietnam/1194/2004 influenza virus (Ad4-H5-Vtn). Our hypothesis is that a mucosally-delivered replicating Ad4-H5-Vtn recombinant vector will be safe and induce protective immunity against H5N1 influenza virus infection and disease pathogenesis.The Ad4-H5-Vtn vaccine was designed with a partial deletion of the E3 region of Ad4 to accommodate the influenza HA gene. Replication and growth kinetics of the vaccine virus in multiple human cell lines indicated that the vaccine virus is attenuated relative to the wild type virus. Expression of the HA transgene in infected cells was documented by flow cytometry, western blot analysis and induction of HA-specific antibody and cellular immune responses in mice. Of particular note, mice immunized intranasally with the Ad4-H5-Vtn vaccine were protected against lethal H5N1 reassortant viral challenge even in the presence of pre-existing immunity to the Ad4 wild type virus.Several non-clinical attributes of this vaccine including safety, induction of HA-specific humoral and cellular immunity, and efficacy were demonstrated using an animal model to support Phase 1 clinical trial evaluation of this new vaccine
    corecore