286 research outputs found

    VLTI/MIDI 10 micron interferometry of the forming massive star W33A

    Full text link
    We report on resolved interferometric observations with VLTI/MIDI of the massive young stellar object (MYSO) W33A. The MIDI observations deliver spectrally dispersed visibilities with values between 0.03 and 0.06, for a baseline of 45m over the wavelength range 8-13 micron. The visibilities indicate that W33A has a FWHM size of approximately 120AU (0.030'') at 8 micron which increases to 240AU at 13 micron, scales previously unexplored among MYSOs. This observed trend is consistent with the temperature falling off with distance. 1D dust radiative transfer models are simultaneously fit to the visibility spectrum, the strong silicate feature and the shape of the mid infrared spectral energy distribution (SED). For any powerlaw density distribution, we find that the sizes (as implied by the visibilities) and the stellar luminosity are incompatible. A reduction to a third of W33A's previously adopted luminosity is required to match the visibilities; such a reduction is consistent with new high resolution 70 micron data from Spitzer's MIPSGAL survey. We obtain best fits for models with shallow dust density distributions of r^(-0.5) and r^(-1.0) and for increased optical depth in the silicate feature produced by decreasing the ISM ratio of graphite to silicates and using optical grain properties by Ossenkopf et al. (1992).Comment: 4 pages, 4 figures. Accepted for ApJ letter

    No Fossil Disk in the T Tauri Multiple System V773 Tau

    Full text link
    We present new multi-epoch near-infrared and optical high-angular images of the V773 Tau pre-main sequence triple system, a weak-line T Tauri (WTTS) system in which the presence of an evolved, ``fossil'' protoplanetary disk has been inferred on the basis of a significant infrared excess. Our images reveal a fourth object bound to the system, V773 Tau D. While it is much fainter than all other components at 2 micron, it is the brightest source in the system at 4.7 micron. We also present medium-resolution K band adaptive optics spectroscopy of this object, which is featureless with the exception of a weak Br gamma emission line. Based on this spectrum and on the spectral energy distribution of the system, we show that V773 Tau D is another member of the small class of ``infrared companions'' (IRCs) to T Tauri stars. It is the least luminous, and probably the least massive, component of the system, as opposed to most other IRCs, which suggests that numerous low-luminosity IRCs such as V773 Tau D may still remain to be discovered. Furthermore, it is the source of the strong IR excess in the system. We therefore reject the interpretation of this excess as the signature of a fossil (or ``passive'') disk and further suggest that these systems may be much less frequent than previously thought. We further show that V773 Tau C is a variable classical T Tauri star (CTTS) and that its motion provides a well constrained orbital model. We show that V773 Tau D can be dynamically stable within this quadruple system if its orbit is highly inclined. Finally, V773 Tau is the first multiple system to display such a variety of evolutionary states (WTTS, CTTS, IRC), which may be the consequence of the strong star-star interactions in this compact quadruple system.Comment: Accepted for publication in Astrophysical Journal, 29 pages, 2 tables, 5 figure

    Implications of Lorentz covariance for the guidance equation in two-slit quantum interference

    Full text link
    It is known that Lorentz covariance fixes uniquely the current and the associated guidance law in the trajectory interpretation of quantum mechanics for spin particles. In the non-relativistic domain this implies a guidance law for the electron which differs by an additional spin-dependent term from that originally proposed by de Broglie and Bohm. In this paper we explore some of the implications of the modified guidance law. We bring out a property of mutual dependence in the particle coordinates that arises in product states, and show that the quantum potential has scalar and vector components which implies the particle is subject to a Lorentz-like force. The conditions for the classical limit and the limit of negligible spin are given, and the empirical sufficiency of the model is demonstrated. We then present a series of calculations of the trajectories based on two-dimensional Gaussian wave packets which illustrate how the additional spin-dependent term plays a significant role in structuring both the individual trajectories and the ensemble. The single packet corresponds to quantum inertial motion. The distinct features encountered when the wavefunction is a product or a superposition are explored, and the trajectories that model the two-slit experiment are given. The latter paths exhibit several new characteristics compared with the original de Broglie-Bohm ones, such as crossing of the axis of symmetry.Comment: 27 pages including 6 pages of figure

    Electroweak Bubble Nucleation, Nonperturbatively

    Get PDF
    We present a lattice method to compute bubble nucleation rates at radiatively induced first order phase transitions, in high temperature, weakly coupled field theories, nonperturbatively. A generalization of Langer's approach, it makes no recourse to saddle point expansions and includes completely the dynamical prefactor. We test the technique by applying it to the electroweak phase transition in the minimal standard model, at an unphysically small Higgs mass which gives a reasonably strong phase transition (lambda/g^2 =0.036, which corresponds to m(Higgs)/m(W) = 0.54 at tree level but does not correspond to a positive physical Higgs mass when radiative effects of the top quark are included), and compare the results to older perturbative and other estimates. While two loop perturbation theory slightly under-estimates the strength of the transition measured by the latent heat, it over-estimates the amount of supercooling by a factor of 2.Comment: 48 pages, including 16 figures. Minor revisions and typo fixes, nothing substantial, conclusions essentially unchange

    Vector meson electromagnetic form factors

    Get PDF
    The charge, magnetic and quadrupole form factors of vector mesons and the charge form factor of pseudo-scalar mesons are calculated in quenched lattice QCD. The charge radii and magnetic moments are derived. The quark sector contributions to the form factors are calculated separately and we highlight the environmental sensitivity of the light-quark contribution to charge radii.QCDSF Collaboration: M. Gürtler, D. Brömmel, M. Göckeler, Ph. Hägler, R. Horsley, Y. Nakamura, D. Pleiter, P.E.L. Rakow, A. Schäfer, G. Schierholz, H. Stüben and J.M. Zanott

    The order of the quantum chromodynamics transition predicted by the standard model of particle physics

    Get PDF
    We determine the nature of the QCD transition using lattice calculations for physical quark masses. Susceptibilities are extrapolated to vanishing lattice spacing for three physical volumes, the smallest and largest of which differ by a factor of five. This ensures that a true transition should result in a dramatic increase of the susceptibilities.No such behaviour is observed: our finite-size scaling analysis shows that the finite-temperature QCD transition in the hot early Universe was not a real phase transition, but an analytic crossover (involving a rapid change, as opposed to a jump, as the temperature varied). As such, it will be difficult to find experimental evidence of this transition from astronomical observations.Comment: 7 pages, 4 figure

    A Census of the Chamaeleon I Star-Forming Region

    Full text link
    Optical spectroscopy has been obtained for 179 objects that have been previously identified as possible members of the cluster, that lack either accurate spectral types or clear evidence of membership, and that are optically visible (I<18). I have used these spectroscopic data and all other available constraints to evaluate the spectral classifications and membership status of a total sample of 288 candidate members of Chamaeleon I that have appeared in published studies of the cluster. The latest census of Chamaeleon I now contains 158 members, 8 of which are later than M6 and thus are likely to be brown dwarfs. I find that many of the objects identified as members of Chamaeleon I in recent surveys are actually field stars. Meanwhile, 7 of 9 candidates discovered by Carpenter and coworkers are confirmed as members, one of which is the coolest known member of Chamaeleon I at a spectral type of M8 (~0.03 M_sun). I have estimated extinctions, luminosities, and effective temperatures for the members and used these data to construct an H-R diagram for the cluster. Chamaeleon I has a median age of ~2 Myr according to evolutionary models, and hence is similar in age to IC 348 and is slightly older than Taurus (~1 Myr). The measurement of an IMF for Chamaeleon I from this census is not possible because of the disparate methods with which the known members were originally selected, and must await an unbiased, magnitude-limited survey of the cluster.Comment: 59 pages, 22 figure

    Measuring the Broken Phase Sphaleron Rate Nonperturbatively

    Get PDF
    We present details for a method to compute the broken phase sphaleron rate (rate of hot baryon number violation below the electroweak phase transition) nonperturbatively, using a combination of multicanonical and real time lattice techniques. The calculation includes the ``dynamical prefactor,'' which accounts for prompt recrossings of the sphaleron barrier. The prefactor depends on the hard thermal loops, getting smaller with increasing Debye mass; but for realistic Debye masses the effect is not large. The baryon number erasure rate in the broken phase is slower than a perturbative estimate by about exp(-3.6). Assuming the electroweak phase transition has enough latent heat to reheat the universe to the equilibrium temperature, baryon number is preserved after the phase transition if the ratio of (``dimensionally reduced'' thermal) scalar to gauge couplings (lambda / g^2) is less than .037.Comment: 41 pages, 13 figures included with psfig. Some wordings clarified, nothing substantial change

    Diffraction-limited ultrabroadband terahertz spectroscopy

    Get PDF
    Diffraction is the ultimate limit at which details of objects can be resolved in conventional optical spectroscopy and imaging systems. In the THz spectral range, spectroscopy systems increasingly rely on ultra-broadband radiation (extending over more 5 octaves) making a great challenge to reach resolution limited by diffraction. Here, we propose an original easy-to-implement wavefront manipulation concept to achieve ultrabroadband THz spectroscopy system with diffraction-limited resolution. Applying this concept to a large-area photoconductive emitter, we demonstrate diffraction-limited ultra-broadband spectroscopy system up to 14.5 THz with a dynamic range of 103. The strong focusing of ultrabroadband THz radiation provided by our approach is essential for investigating single micrometer-scale objects such as graphene flakes or living cells, and besides for achieving intense ultra-broadband THz electric fields
    • …
    corecore