381 research outputs found

    Novel Roles for Actin in Mitochondrial Fission

    Get PDF
    Mitochondrial dynamics, including fusion, fission and translocation, are crucial to cellular homeostasis, with roles in cellular polarity, stress response and apoptosis. Mitochondrial fission has received particular attention, owing to links with several neurodegenerative diseases. A central player in fission is the cytoplasmic dynamin-related GTPase Drp1, which oligomerizes at the fission site and hydrolyzes GTP to drive membrane ingression. Drp1 recruitment to the outer mitochondrial membrane (OMM) is a key regulatory event, which appears to require a pre-constriction step in which the endoplasmic reticulum (ER) and mitochondrion interact extensively, a process termed ERMD (ER-associated mitochondrial division). It is unclear how ER-mitochondrial contact generates the force required for pre-constriction or why pre-constriction leads to Drp1 recruitment. Recent results, however, show that ERMD might be an actin-based process in mammals that requires the ER-associated formin INF2 upstream of Drp1, and that myosin II and other actin-binding proteins might be involved. In this Commentary, we present a mechanistic model for mitochondrial fission in which actin and myosin contribute in two ways; firstly, by supplying the force for pre-constriction and secondly, by serving as a coincidence detector for Drp1 binding. In addition, we discuss the possibility that multiple fission mechanisms exist in mammals

    Connecting the Cytoskeleton to the Endoplasmic Reticulum and Golgi

    Get PDF
    A tendency in cell biology is to divide and conquer. For example, decades of painstaking work have led to an understanding of endoplasmic reticulum (ER) and Golgi structure, dynamics, and transport. In parallel, cytoskeletal researchers have revealed a fantastic diversity of structure and cellular function in both actin and microtubules. Increasingly, these areas overlap, necessitating an understanding of both organelle and cytoskeletal biology. This review addresses connections between the actin/microtubule cytoskeletons and organelles in animal cells, focusing on three key areas: ER structure and function; ER-to-Golgi transport; and Golgi structure and function. Making these connections has been challenging for several reasons: the small sizes and dynamic characteristics of some components; the fact that organelle-specific cytoskeletal elements can easily be obscured by more abundant cytoskeletal structures; and the difficulties in imaging membranes and cytoskeleton simultaneously, especially at the ultrastructural level. One major concept is that the cytoskeleton is frequently used to generate force for membrane movement, with two potential consequences: translocation of the organelle, or deformation of the organelle membrane. While initially discussing issues common to metazoan cells in general, we subsequently highlight specific features of neurons, since these highly polarized cells present unique challenges for organellar distribution and dynamics

    Antecedents of Expatriate Spouse Adjustment: An Analysis of Japanese Spouses in the United States

    Get PDF
    This is one of the first studies investigating factors related to the adjustment of expatriate spouses. The study extends, both conceptually and methodologically, the limited research on spouse adjustment by testing the effects of language profciency and educational level on adjustment. Furthermore, it is the first study to survey non US respondents in their native language. In the end, we found that time since arrival, educational level, language proficiency, and willingness to communicate are directly related to spouse adjustment

    Model for the hydration of non-polar compounds and polymers

    Full text link
    We introduce an exactly solvable statistical-mechanical model of the hydration of non-polar compounds, based on grouping water molecules in clusters where hydrogen bonds and isotropic interactions occur; interactions between clusters are neglected. Analytical results show that an effective strengthening of hydrogen bonds in the presence of the solute, together with a geometric reorganization of water molecules, are enough to yield hydrophobic behavior. We extend our model to describe a non-polar homopolymer in aqueous solution, obtaining a clear evidence of both ``cold'' and ``warm'' swelling transitions. This suggests that our model could be relevant to describe some features of protein folding.Comment: REVTeX, 6 pages, 3 figure

    Betatrophin levels are related to the early histological findings in nonalcoholic fatty liver disease

    Get PDF
    Betatrophin, a liver hormone, regulates glucose and lipid metabolism. We investigated the betatrophin levels in nonalcoholic fatty liver disease (NAFLD) and searched for any relationship with histological severity and metabolic parameters. Fifty males with NAFLD [Nonalcoholic Steatohepati-tis (NASH) (n = 32); non-NASH (n = 18)] and 30 healthy controls were included. Plasma betatrophin was measured by ELISA method. Insulin sensitivity was assessed by HOMA-IR index. Histological features were scored by the semi quantitative classification and combined as the NAFLD activity score (NAS). Betatrophin levels in the non-NASH group were significantly higher than the controls. Betatrophin was positively correlated to the age, waist circumference, total cholesterol, triglycerides, LDL cholesterol, glucose, insulin, HOMA-IR index and gamma glutamyl transpeptidase levels, and negatively correlated to the steatosis and NAS. In the stepwise linear regression analysis, the triglyceride (β = 0.457, p < 0.001), glucose (β = 0.281, p = 0.02) and NAS (β = −0.260, p = 0.03) were the independent determinants of betatrophin. Betatrophin levels are higher in the early stages of NAFLD and tend to decrease when the disease progresses. This could be an important preliminary mechanistic finding to explain the increased frequency of glucose intolerance during the course of NAFLD

    Peginterferon alfa-2a alone, lamivudine alone, and the two in combination in patients with HBeAg-negative chronic hepatitis B

    Get PDF
    BACKGROUND: Available treatments for hepatitis B e antigen (HBeAg)-negative chronic hepatitis B are associated with poor sustained responses. As a result, nucleoside and nucleotide analogues are typically continued indefinitely, a strategy associated with the risk of resistance and unknown long-term safety implications. METHODS: We compared the efficacy and safety of peginterferon alfa-2a (180 microg once weekly) plus placebo, peginterferon alfa-2a plus lamivudine (100 mg daily), and lamivudine alone in 177, 179, and 181 patients with HBeAg-negative chronic hepatitis B, respectively. Patients were treated for 48 weeks and followed for an additional 24 weeks. RESULTS: After 24 weeks of follow-up, the percentage of patients with normalization of alanine aminotransferase levels or hepatitis B virus (HBV) DNA levels below 20,000 copies per milliliter was significantly higher with peginterferon alfa-2a monotherapy (59 percent and 43 percent, respectively) and peginterferon alfa-2a plus lamivudine (60 percent and 44 percent) than with lamivudine monotherapy (44 percent, P=0.004 and P=0.003, respectively; and 29 percent, P=0.007 and P=0.003, respectively). Rates of sustained suppression of HBV DNA to below 400 copies per milliliter were 19 percent with peginterferon alfa-2a monotherapy, 20 percent with combination therapy, and 7 percent with lamivudine alone (P<0.001 for both comparisons with lamivudine alone). Loss of hepatitis B surface antigen occurred in 12 patients in the peginterferon groups, as compared with 0 patients in the group given lamivudine alone. Adverse events, including pyrexia, fatigue, myalgia, and headache, were less frequent with lamivudine monotherapy than with peginterferon alfa-2a monotherapy or combination therapy. CONCLUSIONS: Patients with HBeAg-negative chronic hepatitis B had significantly higher rates of response, sustained for 24 weeks after the cessation of therapy, with peginterferon alfa-2a than with lamivudine. The addition of lamivudine to peginterferon alfa-2a did not improve post-therapy response rates. Copyright 2004 Massachusetts Medical Societypublished_or_final_versio

    Phylogeny and S1 Gene Variation of Infectious Bronchitis Virus Detected in Broilers and Layers in Turkey

    Get PDF
    Citation: Yilmaz, H., Altan, E., Cizmecigil, U. Y., Gurel, A., Ozturk, G. Y., Bamac, O. E., . . . Turan, N. (2016). Phylogeny and S1 Gene Variation of Infectious Bronchitis Virus Detected in Broilers and Layers in Turkey. Avian Diseases, 60(3), 596-602. doi:10.1637/11346-120915-Reg.1The avian coronavirus infectious bronchitis virus (AvCoV-IBV) is recognized as an important global pathogen because new variants are a continuous threat to the poultry industry worldwide. This study investigates the genetic origin and diversity of AvCoV-IBV by analysis of the S1 sequence derived from 49 broiler flocks and 14 layer flocks in different regions of Turkey. AvCoV-IBV RNA was detected in 41 (83.6%) broiler flocks and nine (64.2%) of the layer flocks by TaqMan real-time RT-PCR. In addition, AvCoV-IBV RNA was detected in the tracheas 27/30 (90%), lungs 31/49 (62.2%), caecal tonsils 7/22 (31.8%), and kidneys 4/49 (8.1%) of broiler flocks examined. Pathologic lesions, hemorrhages, and mononuclear infiltrations were predominantly observed in tracheas and to a lesser extent in the lungs and a few in kidneys. A phylogenetic tree based on partial S1 sequences of the detected AvCoV-IBVs (including isolates) revealed that 1) viruses detected in five broiler flocks were similar to the IBV vaccines Ma5, H120, M41; 2) viruses detected in 24 broiler flocks were similar to those previously reported from Turkey and to Israel variant-2 strains; 3) viruses detected in seven layer flocks were different from those found in any of the broiler flocks but similar to viruses previously reported from Iran, India, and China (similar to Israel variant-1 and 4/91 serotypes); and 4) that the AVCoV-IBV, Israeli variant-2 strain, found to be circulating in Turkey appears to be undergoing molecular evolution. In conclusion, genetically different AvCoV-IBV strains, including vaccine-like strains, based on their partial S1 sequence, are circulating in broiler and layer chicken flocks in Turkey and the Israeli variant-2 strain is undergoing evolution. © 2016 American Association of Avian Pathologists
    corecore