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COMMENTARY

Novel roles for actin in mitochondrial fission

Anna L. Hatch, Pinar S. Gurel and Henry N. Higgs*

ABSTRACT

Mitochondrial dynamics, including fusion, fission and translocation,

are crucial to cellular homeostasis, with roles in cellular polarity,

stress response and apoptosis. Mitochondrial fission has received

particular attention, owing to links with several neurodegenerative

diseases. A central player in fission is the cytoplasmic dynamin-

related GTPase Drp1, which oligomerizes at the fission site and

hydrolyzes GTP to drive membrane ingression. Drp1 recruitment to

the outer mitochondrial membrane (OMM) is a key regulatory event,

which appears to require a pre-constriction step in which the

endoplasmic reticulum (ER) and mitochondrion interact extensively,

a process termed ERMD (ER-associated mitochondrial division). It

is unclear how ER–mitochondrial contact generates the force

required for pre-constriction or why pre-constriction leads to Drp1

recruitment. Recent results, however, show that ERMD might be an

actin-based process in mammals that requires the ER-associated

formin INF2 upstream of Drp1, and that myosin II and other actin-

binding proteins might be involved. In this Commentary, we present

a mechanistic model for mitochondrial fission in which actin and

myosin contribute in two ways; firstly, by supplying the force for pre-

constriction and secondly, by serving as a coincidence detector for

Drp1 binding. In addition, we discuss the possibility that multiple

fission mechanisms exist in mammals.

KEY WORDS: Actin, Mitochondrial fission, Myosin

Introduction
First described as bioblasts in 1890, mitochondria were renamed

eight years later as a combination of the Greek terms ‘mitos’,

meaning thread, and ‘chondros’ for granule (Benda, 1898).

Originating from an endosymbiotic relationship, the mitochondrial

genome and cardiolipin-rich inner mitochondrial membrane (IMM)

are remnants of the bacterial endosymbiont (Mileykovskaya and

Dowhan, 2009), whereas the outer mitochondrial membrane (OMM)

likely came from the original host. A major function of the

mitochondrion is ATP production, and large amounts of NAD+ and

FADH undergo redox cycles in the mitochondrial matrix. In this

large flux of electrons, some can become lost, creating free radicals.

This process, coupled with limited DNA repair mechanisms,

increases the mutational susceptibility of the mitochondrial

genome (Youle and van der Bliek, 2012), raising the question of

how mitochondrial DNA damage is mitigated.

In 1914, Lewis and Lewis noted that mitochondria were

incredibly dynamic – constantly moving, fusing and undergoing

fission (Lewis and Lewis, 1914). However, no immediate

significance was attributed to these dynamics. Within the past

20 years, there has been a renewed interest, owing to the clear

role of mitochondrial dynamics in protection from oxidative

damage. The picture emerging is that there are several possible

responses to mitochondrial oxidative damage: (1) fusion with a

healthy mitochondrion to spread the damage; (2) segregation of

damaged components followed by fission of the damaged segment

from the healthy segment, with subsequent mitophagy to remove

the damaged fission product; or (3) apoptosis, in which the fission

machinery also appears to play a role. In addition, mitochondrial

dynamics are required for proper mitochondrial distribution during

cell division and cell polarization. Owing to the highly polarized

state of neurons, mitochondrial dynamics are intimately associated

with the pathogenesis of many neurodegenerative diseases,

including Alzheimer’s, Huntington’s, Parkinson’s, ALS and

Charcot-Marie-Tooth disease. A number of excellent recent

reviews cover these subjects in detail (Archer, 2013; Chan, 2012;

Friedman and Nunnari, 2014; Hoppins and Nunnari, 2012; Nunnari

and Suomalainen, 2012; Vafai and Mootha, 2012; Youle and van

der Bliek, 2012).

This Commentary focuses on the participation of the actin

cytoskeleton in mitochondrial fission, and we construct a

mechanistic model for how actin might produce constrictive

force. One goal of our model is to highlight the relevant sizes of

the key players, because the dimensions of the ER, mitochondrion

and fission apparatus put constraints on the possible mechanisms.

For instance, the narrow widths of mammalian mitochondria from

many cell types, with diameters frequently in the range of only

150–300 nm, restrict the possible ways in which force can be

applied by actin and myosin (Goldstein et al., 1984; Hu et al.,

2013; Jans et al., 2013; Kim et al., 2012; Noske et al., 2008;

Perkins and Ellisman, 2011; Vafai and Mootha, 2012). In

addition, we present the possibility that there might be multiple

mechanisms by which actin participates in fission.

Mitochondrial fission – factors and outstanding questions
Before discussing the role of actin, we describe a central protein in

mitochondrial fission, Drp1. Drp1 is a dynamin-related GTPase

conserved throughout eukaryotes (also referred to as Dnm1,

Dlp1, Dvlp1, Dnm1l and Dymple), with work in yeast and

Caenorhabditis elegans originally identifying it as a mitochondrial

fission factor (Bleazard et al., 1999; Boldogh et al., 2001;

Labrousse et al., 1999; Otsuga et al., 1998). The crystal structure

of human Drp1 shows that it is elongated, with the GTPase domain

at one end (Fröhlich et al., 2013). Purified Drp1 is an X-shaped

dimer that assembles into higher-order oligomers under a number

of conditions, and it has the ability to tubulate anionic lipid

membranes (Fröhlich et al., 2013; Ingerman et al., 2005; Koirala

et al., 2013; Macdonald et al., 2014). GTP hydrolysis causes

constriction of the tubulated membrane (Koirala et al., 2013; Mears

et al., 2011). Drp1 accumulates at mitochondrial fission sites, and

its constriction activity appears to be a driving force in fission

(Fig. 1A).
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Major questions in the field are: how is fission initiated, what
defines a fission site and how is Drp1 recruited? It has been

shown that some constriction still occurs at specific points along
the mitochondrion in cells that are compromised for Drp1
activity, leading to the hypothesis that a Drp1-independent ‘pre-

constriction’ event is necessary for Drp1 recruitment (Fig. 1A)
(Friedman et al., 2011; Koch et al., 2004; Labrousse et al., 1999;
Legesse-Miller et al., 2003). However, this model then raises
other questions. How does pre-constriction occur? How does pre-

constriction trigger Drp1 recruitment?
Furthermore, what are the Drp1 ‘receptors’ that bind to Drp1

on the OMM? In yeast, Dnm1 recruitment is relatively well

defined: the single-pass OMM protein Fis1 binds to one of two
adaptor proteins, Mdv1 or Caf4 (Fig. 1B) (Griffin et al., 2005;
Guo et al., 2012; Tieu et al., 2002), either of which then recruits

Dnm1. In mammals, the picture is less clear. Although metazoans
possess Fis1, they lack obvious adaptor homologs, and the effects
of Fis1 on fission have been variable between studies (Gandre-
Babbe and van der Bliek, 2008; Koirala et al., 2013; Losón et al.,

2013; Otera et al., 2010; Palmer et al., 2013). However, exciting
recent work has demonstrated a role for Fis1 during mitophagy
(Shen et al., 2014; Yamano et al., 2014). Three other single-pass

OMM proteins have been identified as potential Drp1 receptors –
Mff, MiD49 and MiD51 (Gandre-Babbe and van der Bliek, 2008;
Otera et al., 2010; Palmer et al., 2011) (Fig. 1B). Below, we

discuss the possibility that these multiple receptors represent
mechanistic variations of mitochondrial fission.

The question of what activates Drp1 recruitment has been
addressed in an elegant study that showed fission often occurs at

mitochondrial–ER contact sites – areas where the ER is wrapped
around mitochondria (Friedman et al., 2011) – in a process called
ERMD (ER-associated mitochondrial division). Interestingly, in
Drp1-deficient cells, the ER still wraps around mitochondria and

these sites still constrict. At least one Drp1 receptor, Mff, has
been shown to be enriched at contact points (Friedman et al.,
2011), but the mechanism leading to its enrichment is unknown.

Overall, there are many questions regarding how the ER mediates
pre-constriction, including questions about the mechanism
providing the force for pre-constriction.

Evidence for actin, INF2 and myosin in mitochondrial fission
The first suggestion that actin might play a role in mitochondrial

fission came from the observation that actin-depolymerizing
drugs inhibit Drp1 recruitment and the reduction in mitochondrial
length that is mediated by several mitochondrial poisons in CV1-
4A monkey kidney cells (De Vos et al., 2005). Subsequently, it

was shown that changes in the levels or distribution of actin
filaments cause alterations in mitochondrial length and in Drp1
recruitment in Drosophila neurons and Cos-1 cells (DuBoff et al.,

2012). However, it was not clear how actin could influence
mitochondrial fission or what would assemble these actin
filaments.

A more recent study linked actin to ERMD through the formin
INF2 (Korobova et al., 2013). Formins are actin-assembly factors
that can accelerate both the nucleation and elongation of actin

filaments through their binding to the fast-growing ‘barbed’ end
of the filament (Fig. 2A) (Higgs, 2005). INF2 has additional
effects on actin filaments (see Box 1). INF2 is expressed as two
isoforms that differ at their C-termini. The INF2-ER variant (also

called INF2-CAAX) contains an 18-amino-acid C-terminus that
is post-translationally prenylated, whereas the INF2-Cyto variant
(also called INF2-nonCAAX) contains a non-prenylated nine-

amino-acid C-terminus. This difference essentially creates two
different proteins, with INF2-ER being ER-bound and INF2-Cyto
being cytosolic (Chhabra et al., 2009; Ramabhadran et al., 2011).

Whereas suppression of INF2-Cyto causes Golgi fragmentation
(Ramabhadran et al., 2011), that of INF2-ER results in
mitochondrial elongation (Korobova et al., 2013). Actin
filaments accumulate at ER–mitochondrial contact sites that

undergo constriction (Korobova et al., 2013; M. Karbowski,
personal communication). Furthermore, two lines of evidence
suggest that INF2 acts upstream of Drp1; INF2 depletion

decreases mitochondrially-associated Drp1, and Drp1 inhibition
reduces mitochondrial fragmentation by constitutively active
INF2 (Korobova et al., 2013).

Mounting evidence suggests that myosin II also acts in
mitochondrial fission. There are three mammalian non-muscle
myosin II paralogs, IIA, IIB and IIC, with IIA and IIB being the

most widely expressed. All mammalian non-muscle myosin II
paralogs form anti-parallel filaments that contain 14–30 motor-
containing heads at each end (Billington et al., 2013) (Fig. 2B).
Suppression of myosin regulatory light chain (MRLC) in Cos7

cells (DuBoff et al., 2012) or of myosin IIA or IIB heavy chains
in U2OS cells (Korobova et al., 2014) causes mitochondrial
elongation and decreases the amount of mitochondrially bound

Drp1. Two myosin-directed small molecule inhibitors also cause
mitochondrial elongation – blebbistatin (Korobova et al., 2014)
and ML-7 (DuBoff et al., 2012). Myosin II inhibition also

reverses the effect of constitutively active INF2 (short
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Fig. 1. Role of Drp1 in mitochondrial fission. (A) Schematic illustration of
the general steps involved in mitochondrial fission. Step 1: a fission site is
marked by an unknown mechanism, and this site undergoes ‘pre-
constriction’ (asterisk) prior to the arrival of Drp1 (orange). Step 2: Drp1 binds
to the pre-constriction site and oligomerizes. Step 3: GTP hydrolysis by the
oligomerized Drp1 causes constriction of the fission site. Step 4: fission
occurs by an unknown mechanism. (B) Dnm1/Drp1 receptors in budding
yeast (left) and in mammals (right). In budding yeast, the OMM protein Fis1
binds to the dimeric adaptor protein Mdv1, which in turn binds to the Dnm1
dimer (its GTPase domain is represented by the oval). A second adaptor
protein, Caf4, can act in place of Mdv1. In mammals, four possible OMM
proteins have been postulated to act as Drp1 receptors – Fis1, Mff, MiD49
and MiD51. No adaptor proteins that are homologous to Mdv1 or Caf4 have
been identified in mammals.
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mitochondria) (Korobova et al., 2014). Active MRLC localizes to
constriction sites in an INF2-dependent manner (Korobova et al.,
2014), suggesting that myosin II recruitment requires INF2-
mediated polymerization of actin filaments. Results from

Drosophila show that the amount of actin associated with
mitochondria is reduced in myosin mutant flies (DuBoff et al.,
2012), suggesting a reciprocal relationship between the

accumulation of actin and myosin.
Finally, there is increasing evidence that Drp1 interacts with

actin filaments. In Drosophila extracts, Drp1 co-precipitates with

actin filaments (DuBoff et al., 2012). Myosin II appears to
enhance this interaction, because myosin mutants reduce the co-
precipitation of Drp1 and actin (DuBoff et al., 2012). Using

purified proteins, we have found evidence that mammalian Drp1
directly binds to actin filaments with sub-micromolar affinity,
increasing the GTP hydrolysis rate of Drp1 (A.L.H. and H.N.H.,
unpublished observations). The ability to bind to actin filaments

might be common to the dynamin family, as both dynamin 1 and
2 are also able to bind to actin filaments (Gu et al., 2010).

Mechanistic model for actomyosin-mediated
mitochondrial fission
The results discussed above imply that INF2, actin and myosin II
work together to facilitate the accumulation of Drp1 at the fission

site, perhaps by driving pre-constriction. How might this force be
generated? Actin-based force generation on membranes has been
the subject of intense research for many years, with two general

mechanisms being proposed: (1) that actin polymerization
‘pushes’ the membrane in front of it, or (2) that myosin motors
‘pull’ the actin filament and attached membrane, thereby

producing a constrictive force in the case of bipolar myosin II
filaments (Fig. 2C,D). Examples of actin-polymerization-induced
force are endocytosis and leading edge protrusion during cell
motility, whereas myosin-II-based forces power stress fiber

C
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Fig. 2. Mechanisms of actin-based membrane constriction. (A) The effects of formins on actin. Upper panel, a formin dimer (blue) can enhance the
nucleation of actin monomers (red). Subsequently, it remains at the barbed end of the elongating filament, regulating elongation rate by controlling monomer
addition. For more detail regarding formin biochemistry, see Higgs, 2005 and Chesarone et al., 2010. Lower panel, INF2 is additionally able to sever filaments
and enhance their depolymerization through its ability to bind to the sides of filaments by encircling them. Upon ATP hydrolysis and phosphate release from actin
subunits in the filament, INF2 severs the filament and subsequently enhances depolymerization. For further details regarding INF2 biochemistry, see Gurel et al.,
2014. (B) Non-muscle myosin II. Upper panel, the fundamental unit of myosin II is a multi-protein complex of two heavy chains, two essential light chains (ELC)
and two regulatory light chains (RLC). The heavy chains are tightly dimerized in parallel by their coiled-coil tails of ,160 nm length. We refer to this fundamental
unit as the ‘dimer’ because the dimerized heavy chains dominate the structure. Lower panel, non-muscle myosin II can oligomerize further to create a bipolar
filament with the motor domain heads at each end and a ‘bare zone’ in the center. In the presence of ATP, myosin II assumes a ‘10S’ compact structure,
presumably by folding the tail into three segments. RLC phosphorylation allows for bipolar filament assembly from the compact structure in the presence of ATP.
The latter is a biochemical observation and has not been documented in non-muscle cells. A ‘typical’ mitochondrial diameter is also shown for size comparison.
(C) Actin-polymerization-based membrane deformation by monomer addition to membrane-abutting filament barbed ends. Left, the classic example of Arp2/3-
complex-based dendritic nucleation is shown. Right, an example of a formin tethered to the membrane directing monomer addition to the barbed end. The Arp2/
3 complex and formin are shown in blue. (D) Myosin-II-based membrane deformation. Motor activity of the bipolar myosin II filament on anti-parallel membrane-
attached actin filaments causes the deformation and thus constriction of the membrane. In the example shown here, the barbed ends of the filament are tethered
to the membrane by a formin.
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contraction, cell cortex contraction and the retrograde flow of

actin networks (Blanchoin et al., 2014).
Cytokinesis is another myosin-dependent event, resulting in

membrane constriction and division. The best-studied model for

cytokinesis is fission yeast, for which a clear set of molecular
factors and sequence of events has been defined (Lee et al., 2012;
Pollard, 2010). Myosin II accumulates at the prospective cleavage

furrow in precursor structures, called ‘nodes’. Formin-mediated
actin polymerization from these nodes results in their myosin-II-
mediated focusing into the more compact cytokinetic ring.

Constriction of this ring results in plasma membrane ingression
(Fig. 3). Although myosin motor activity is required early in the
process, constriction of the full ring does not appear to be driven by
myosin, but by other forces, such as septation (Proctor et al., 2012).

Based on the fact that some of the proteins involved in
cytokinesis and mitochondrial fission are similar (actin, a formin,

myosin II), we propose a mechanistic model that we call
‘mitokinesis’ (Fig. 4A). As discussed below, we think that there
might be more than one mechanism by which actin participates in

fission, including mechanisms involving actin-polymerization-
driven force production. The model presented here, however,
provides a starting point for elucidating the roles of INF2 and

myosin II in what is perhaps one type of fission.

Step 1 – Initial ER–mitochondrion interaction
The elegant work from Friedman et al. clearly shows that
the ER makes extensive contact with mitochondria at many
mitochondrial constriction sites (Friedman et al., 2011). The
mechanisms that target and deliver the ER to mitochondria are

unknown in mammals; however, we suspect that the cytoskeleton
is likely to be involved and we predict this to be an exciting area
of future research. We postulate that a major consequence of this

contact is to activate INF2-mediated production of actin
filaments. The molecules that mediate ER–mitochondrial
contacts in mammals are unclear (discussed further below).

How would ER–mitochondrial contact activate INF2? INF2 is
regulated by autoinhibition, similar to other formins, but the
autoinhibitory mechanism for INF2 is not straightforward. In the
case of formins such as mDia1, the N-terminal diaphanous

inhibitory domain (DID) binds tightly to the C-terminal
diaphanous autoregulatory domain (DAD) and potently inhibits
actin polymerization activity (Li and Higgs, 2003; Li and Higgs,

2005). Although INF2 possesses both DID and DAD, these
domains interact with much lower affinity as compared with
those of mDia1 (Ramabhadran et al., 2013). Furthermore, the

DAD of INF2 binds to actin monomers, and this interaction
competes with the DID–DAD interaction (Ramabhadran et al.,
2013). Nevertheless, INF2 is clearly in an ‘off’ state on the

bulk ER, and inhibition requires the DID–DAD interaction
(Ramabhadran et al., 2013). We therefore propose that additional
inhibitory factors exist, either in the cytoplasm or at the ER
surface, and that a factor localized at the OMM acts as an INF2

activator. This molecule might even be one of the Drp1 receptors.

Box 1. The biochemical properties of INF2

INF2 is a formin protein. Formins are actin-binding proteins (15 in
mammals) that generally act as actin filament assembly factors. As
with most formins, INF2 accelerates the nucleation of new actin
filaments in vitro, then remains bound to the elongating barbed
end, moving processively with this end as new monomers are
added. Through this mechanism, INF2 can regulate filament
elongation rate and prevent elongation termination by capping
proteins (Chesarone et al., 2010; Higgs, 2005). In cells, there is a
question as to whether formins nucleate actin filaments or are
elongation factors working downstream of other nucleation factors
(Block et al., 2012; Quinlan, 2013; Quinlan et al., 2007). The
answer to this question might depend on both the formin and the
cellular context.
In addition to accelerating actin polymerization, INF2 also

accelerates depolymerization, which is unique amongst formins
(Chhabra and Higgs, 2006). How can INF2 do both? The switch
between polymerization and depolymerization is triggered by the
change in the nucleotide state of actin upon polymerization. After
adding to the filament barbed end, the actin monomer hydrolyzes
its bound ATP and releases the phosphate product. Both reactions
(hydrolysis and phosphate release) are slower than polymerization,
so that the ‘newer’ end of the filament is ATP bound whereas
the ‘older’ end is ADP bound. INF2 severs ADP-bound filament
regions, by encircling the filament and disrupting filament structure
(Gurel et al., 2014). INF2 can sever at any location along the
filament as long as phosphate has been released, but the
requirement for phosphate release means that ‘older’ filament
segments are favored for severing. Subsequent to severing, INF2
increases the depolymerization rate of the shorter filament
segments by a mechanism that we do not fully understand.
Recently, we have found that INF2 dramatically increases the ATP
turnover rate of actin even when actin is not polymerized (P.S.G.
and H.N.H., unpublished observations), a property that might
contribute to depolymerization.
This unusual depolymerization activity might allow INF2 to

mediate both filament assembly and disassembly at the
mitochondrial fission site, resulting in highly transient filaments
that exist only for the time required to mediate pre-constriction and
Drp1 recruitment. In addition, the severing activity of INF2 might
allow actin filament release from the ER and subsequent direct
binding to the mitochondrion, as stated in step 4 of the mitokinesis
model.
Finally, INF2 binds to microtubules with high affinity (Gaillard

et al., 2011). The physiological relevance of this interaction is
unclear, but the possibilities are intriguing, because both ER and
mitochondria translocate along microtubules (Goyal and
Blackstone, 2013).

1 2 

4 3 

Fig. 3. Model for fission yeast cytokinesis. Step 1: at the presumptive
cleavage site on the plasma membrane, ,130 ‘nodes’ (blue) assemble the
cytokinetic components; each node contains two formin dimers and eight
myosin II dimers. Step 2: the formins nucleate actin filaments (red), which
remain attached to the formin at their barbed ends. The pointed end of the
actin filament interacts with myosin II on a neighboring node by a ‘search and
capture’ mechanism. Step 3: myosin II activity along the actin filaments
causes the nodes to condense into a compact ring structure. Step 4: further
myosin II activity causes the ring to further condense, thereby causing
constriction of the plasma membrane. Additional force-generating
mechanisms might exist that become more important at subsequent stages
of constriction and fission (Proctor et al., 2012).
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In this regard, it is interesting that MID51 could be involved, as
its overexpression causes actin filament accumulation around
mitochondria (Palmer et al., 2011).

Step 2 – Actin filament production at the fission site
ER–mitochondrial contact results in actin filament nucleation

through INF2 or other proteins. Whatever the nucleator, the result
is that the filament barbed end remains tethered to the ER

membrane through INF2. Although INF2 can also bind to the side
of filament (Gurel et al., 2014) (Fig. 2A), binding to the barbed
end is the initial interaction. Possible roles for side binding in

filament disassembly are discussed in Step 7.

Step 3 – Myosin recruitment to the fission site
Following actin recruitment, myosin II assembles into the pre-
constriction complex. How is myosin II recruited? Typically,

See panel B
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Fig. 4. The mitokinesis model of mitochondrial fission. (A) Step 1: The ER (green) and mitochondrion (blue) interact at the future site of mitochondrial
fission. Step 2: actin filaments (red) are nucleated and elongate with INF2 (gray donut) at their barbed ends, thus staying tethered to the ER through INF2. Step
3: Myosin II is recruited to the fission site. The recruited myosin might come from a cytosolic pool of free dimers or from pre-assembled bipolar filaments. Step 4
(pre-constriction): myosin II activity on anti-parallel actin filaments causes deformation of the network, resulting in constriction of both the surrounding ER and the
underlying mitochondrion. Step 5 (coincidence detection): Drp1 (brown circles) binds and oligomerizes at the pre-constriction site, owing to coincidence
detection of two signals – an OMM-bound Drp1 receptor (purple) and actin filaments. Step 6: GTPase activity of Drp1 causes increased mitochondrial
constriction. Step 7: The actual membrane fission process occurs, and components of the fission complex (actin, myosin, Drp1 oligomer) disassemble. (B) Two
possible models for myosin II arrangement during mitokinesis. Side views of the enlarged fission site at Step 3 and 4 of the model depicted in A are shown. In
both models, ER is not required to completely encircle the mitochondrion, but encircles sufficiently to allow a continuous actomyosin ring around the
mitochondrion. (Bi) Bipolar arrangement. Myosin II is assembled in the form of bipolar filaments around the mitochondrion and acts on actin filaments that are
bound by INF2 at the ER membrane to constrict both ER and the mitochondrion. (Bii) Nodal arrangement. Several nodes assemble on the ER membrane and
each contains INF2 and myosin II. Actin filaments that are assembled at one node bind to myosin II at neighboring nodes. Myosin II activity then pulls the nodes
together, in turn constricting both the ER and mitochondrial membranes. In this model, similar to models of fission yeast cytokinesis (see Fig. 3), the myosin II is
organized as individual dimers that are attached to the nodes by their tails. Possibly, the tails are also folded so that the myosin II dimer is shorter than its
extended length of 175 nm.
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non-muscle myosin II is activated by phosphorylation of the
MRLC, which stimulates both bipolar filament assembly and

motor activity (Billington et al., 2013; Vicente-Manzanares
et al., 2009). In other myosin-II-requiring processes, MRLC
phosphorylation is mediated by myosin regulatory light chain
kinase (MLCK, also known as MRLK or MYLK), Rho kinase

(ROCK) or possibly by myotonic dystrophy kinase-related
Cdc42-binding kinase (MRCK) (Unbekandt and Olson, 2014;
Vicente-Manzanares et al., 2009). It has been shown that

inhibition of MLCK induces long mitochondria (DuBoff et al.,
2012) and that phosphorylated MRLC is enriched at constriction
sites (Korobova et al., 2014); therefore, MLCK activity appears

to be necessary for the recruitment of active myosin II to the
fission site, although the mechanisms that activate MLCK at this
site are unclear.

Step 4 – Pre-constriction through acto-myosin based contraction
Myosin II is a barbed-end-directed motor and is typically
associated with constrictive forces, such as in muscle or stress

fibers. However, the relative size of the myosin II molecule and
the mitochondrion provide significant constraints for the
arrangement of myosin II during fission. We envisage two

potential arrangements – a bipolar and a nodal arrangement
(Fig. 4B). In both cases, constriction occurs through complete
encirclement of the mitochondrion by the actomyosin network,

but ER need only encircle the mitochondrion to an extent that
allows assembly of the continuous actomyosin network.

Bipolar arrangement
The canonical structure of active myosin II is as a bipolar
filament, with multiple motor heads at each end. Motor activity
on antiparallel actin filaments acts like a tightening belt

(Fig. 2D), constricting both the ER (to which the filaments are
bound) and the underlying mitochondrion. In the model shown in
Fig. 4Bi, actin filaments would only be attached to the ER, as

attachment to both ER and mitochondrion would produce an
outward force on the OMM. Alternatively, the actin filaments
could be attached only to the OMM, but in this case there would

have to be a mechanism to release their barbed ends from INF2 at
the ER. Release could occur through INF2-mediated filament
severing.

One challenge with such a bipolar arrangement is that the

relative size of the non-muscle myosin II bipolar filament
(,300 nm) is of the same order of magnitude as the diameter of
many mammalian mitochondria, which is generally ,300 nm

(Fig. 2B). These dimensions create a significant limit on the
spatial arrangement of the myosin II bipolar filament at the
fission site (Fig. 4Bi). Because pre-constriction represents only

partial membrane ingression, the multiple motor heads of the
thick myosin filament should, in principle, be able to
accommodate this degree of constriction.

Nodal arrangement
This model uses aspects of the node-based model that has been
described for fission yeast cytokinesis (Lee et al., 2012; Pollard,

2010), in which a loose cluster of nodes containing formin and
myosin II develops at the cleavage site. In the case of
mitochondrial fission, these nodes would assemble on the ER.

Myosin II activity on actin filaments emanating from neighboring
nodes would condense the ER and, thus, the underlying
mitochondrion (Fig. 4Bii). Alternatively, the nodes could

assemble on the OMM, but again this would require release of

the filament barbed end from ER, as well as subsequent filament
binding to a factor located at the OMM. The severing activity of

INF2 could contribute to filament release from ER.
One feature of the nodal model is that myosin II might not be

organized as a bipolar filament, but as individual myosin II dimers
attached to the node through their tails. There is evidence for such

an arrangement in fission yeast cytokinesis, through use of single-
molecule high-resolution colocalization (SHREC) (Laporte et al.,
2011). In this study, a distance of 70 nm between the myosin head

and its tail at the membrane has been measured, suggesting that the
coiled-coil tail of myosin might be folded back on itself, perhaps
similar to an inactive compact conformation of many myosin II

molecules identified in vitro (Billington et al., 2013; Craig et al.,
1983) and in smooth muscle cells (Milton et al., 2011). Recently,
activated myosin II dimers have been identified in mammalian

culture cells (Shutova et al., 2014).
One difference between fission yeast cytokinesis and

mammalian mitochondrial fission is that the narrow ER tubule
(50 nm in diameter) would not be able to accommodate the wide

band of nodes that are observed at the onset of fission yeast
cytokinesis (see Fig. 3). Nevertheless, it is conceivable that a
narrower band could produce the same effect. Also, ER can

transition between tubules and sheets, which are wider (Voeltz
and Prinz, 2007). Some aspect of the tubule–sheet transition
could occur here.

Step 5 – Drp1 recruitment to the pre-constriction site
Our recent evidence that Drp1 can bind to actin filaments directly

(A.L.H. and H.N.H., unpublished observations) suggests that
actin might bind to Drp1 at the fission site. We envisage that
Drp1 recruitment occurs by coincidence detection of two
interactions, one with a Drp1 receptor (Mff, MiD49/51 or Fis1)

and the other with actin filaments. Coincidence detection is a
common theme in protein activation; one example is the
activation of WASP/N-WASP by Cdc42, polyphosphoinositides

and SH3 domain-containing proteins (Prehoda and Lim, 2002;
Prehoda et al., 2000). Similar interactions could also orient Drp1
in order to enhance productive oligomerization. Recent results

suggest that there are possible subtypes of Drp1 oligomers with
differential properties – a cytoplasmic pool and a membrane-
bound pool (Macdonald et al., 2014). For dynamins in general,
oligomerization promotes GTP hydrolysis by allowing the

GTPase domains to interact (Bui and Shaw, 2013). A function
of actin filaments might therefore be to organize Drp1 oligomers
into a GTPase-competent oligomerization state. Indeed, we

observe that actin filaments increase the GTP hydrolysis rate of
Drp1 approximately threefold (A.L.H. and H.N.H., unpublished
observations).

An additional interaction might occur with phospholipids at the
OMM. Unlike dynamin, Drp1 does not have a clear lipid-binding
domain, but studies using purified Drp1 have shown that anionic

lipids increase its GTP hydrolysis rate, suggesting that it has some
affinity for anionic lipids (Fröhlich et al., 2013; Lackner et al.,
2009; Macdonald et al., 2014). Cardiolipin and phosphatidic acid
appear to be particularly effective in this respect (Macdonald

et al., 2014). It remains to be seen whether all three interactions
(actin filaments, receptor protein and anionic lipids) can occur on
Drp1 simultaneously or whether perhaps actin and lipids act as

alternative coincidence detectors, in combination with specific
Drp1 receptors on the OMM. Also of interest is whether all eight
currently identified Drp1 splice variants (Strack et al., 2013)

interact with actin or cardiolipin similarly.
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Step 6 – Drp1-mediated constriction
The generally accepted model for dynamin action is that GTP

hydrolysis causes a change in the orientation of a domain adjacent
to its GTPase domain, akin to a power stroke for a myosin motor,
and that this causes constriction of the oligomeric ring (Bui and
Shaw, 2013). One question of relevance to mitochondrial fission

is how small a constricted Drp1 ring can become? In the case of
yeast Dnm1, GTP hydrolysis results in an approximate twofold
decrease in ring diameter, to 68 nm (Mears et al., 2011).

Mammalian Drp1 forms rings as small as 15 nm in the
presence of the cytoplasmic domain of MiD49 (Koirala et al.,
2013). The diameter of the Drp1-constricted ring is interesting to

consider, as it adds another size constraint, potentially limiting
the number of membranes within the ring.

Step 7 – Membrane fission and fission complex disassembly
At present, the mechanism underlying the final phase of
mitochondrial fission, the recombination of both the OMM and
the IMM, remains unclear. It has been implied that the actual

fission event might occur ‘passively’, simply owing to close
membrane apposition, and that the OMM and IMM break and
recombine in the correct manner. Although possible, this scenario

appears unlikely given the potential consequences of OMM or
IMM leakage (such as cytochrome C leakage, leading to apoptosis,
or proton gradient dissipation, leading to reduced mitochondrial

efficiency). Furthermore, GTP-induced constriction of the yeast
Dnm1 ring is transient (Mears et al., 2011), suggesting that Drp1/
Dnm1-mediated constriction might not be sufficient for fission.

Although plants have a system for regulating IMM
recombination, mediated by the GTPase FtsZ [(Osteryoung and
Pyke, 2014; Yoshida et al., 2012); see Box 2], no system in
metazoans or yeast was identified until recently. There is now

evidence that the GTPase Opa1, originally thought to mediate
IMM fusion only, might play a role in fission when it is
proteolytically processed in a specific manner (Anand et al.,

2014). Furthermore, IMM fission and recombination might occur
prior to OMM constriction, as there is evidence for extensive
vesiculation of the matrix compartment during apoptosis (Sun

et al., 2007), and this might also occur in a more controlled
manner in other fission events. Nevertheless, the question remains
of how the OMM undergoes controlled fission and/or
recombination. Again, a comparison with cytokinesis might be

instructive, and we now know that this process is tightly regulated
by the ESCRT complex (Chen et al., 2012). Although we raise
this possibility, there is no current evidence for this mechanism.

It is also unclear how the Drp1 ring disassembles. After GTP-
induced constriction, the yeast Dnm1 ring relaxes but does not
disassemble in its purified form (Mears et al., 2011). Presumably, the

Dnm1 subunits of the ring are in the GDP- or nucleotide-free state at
this point, but this appears to be insufficient for disassembly. It will
be interesting to examine the combination of membrane-bound Drp1

receptors and actin filaments on Drp1 ring dynamics.
How do the actin filaments disassemble? One possibility is

INF2 itself might mediate disassembly, through its ability to
accelerate both actin assembly and disassembly (Chhabra and

Higgs, 2006; Gurel et al., 2014). The switch between assembly
and disassembly is controlled by the nucleotide state of the actin
filament (see Box 1), which could serve as a timer for

disassembly. If so, the filaments might be extremely transient.
Another possible function of INF2-mediated depolymerization,
not mutually exclusive with the first, is in the actual constriction

process, to reduce the build-up of filaments as constriction

progresses. A similar function of cofilin might be important in

cytokinesis (Chen and Pollard, 2011). Regardless of the exact
mechanistic details that the above model presents, there are a
number of other issues that are raised by the discovery of an

actin-based component to mitochondrial fission. We will discuss
some of these in the next section.

Other proteins involved in actin-dependent mitochondrial
fission
It is highly likely that other proteins are involved in this
mechanism of mitochondrial fission, as it is difficult to imagine

that only INF2, myosin II, Drp1 and a Drp1 receptor can fulfill all
required functions. Additional proteins have been implicated in
mediating ER–mitochondrion interactions, allowing the ER to

wrap around the mitochondrion. In budding yeast, the ER–
mitochondrion encounter structure (ERMES) serves this function

Box 2. Interspecies diversity of mitochondrial
fission mechanisms

Although Drp1 is a key component of mitochondrial fission in all
eukaryotes studied, there are several clear differences in other
components between species.

Plants and algae
Much has been learned about chloroplast and mitochondrial fission
in plants and certain red algae (Osteryoung and Pyke, 2014;
Yoshida et al., 2012). Two major structural features arise during
fission. First, a proteinaceous ring assembles within the IMM, a
major component of which is the GTPase FtsZ. Second, an
additional proteinaceous ring, called the PD or MD, assembles
outside the OMM. Drp1 is recruited to this PD/MD ring, first as
individual punctate entities then as a ring-like structure. Importantly,
plant and algal plastids are significantly larger (1–10 mm diameter)
than mammalian mitochondria.

Budding yeast
A major difference between yeast and the plant/alga systems is
that yeast (and mammals) possess no FtsZ homolog, although
recent evidence suggests that Opa1 might participate in IMM
fission (Anand et al., 2014). The OMM constricts at sites of ER
contact, with the ER wrapping around the mitochondrion. Varying
degrees of wrapping occur (the greatest observed being 91%), and
the degree of constriction is roughly proportional to the degree of
wrapping (Friedman et al., 2011). Unconstricted yeast mitochondria
are 200–300 nm in diameter, reducing to 146 nm upon ER
association. Dnm1 enriches at this site, but it is not clear whether
initial constriction is Dnm1-dependent. Fis1 is the receptor for
Dnm1 on the OMM, but also requires a cytosolic adaptor (Griffin
et al., 2005; Guo et al., 2012; Tieu et al., 2002). The ER–
mitochondrion association is mediated by ERMES, a four-protein
complex including two integral OMM proteins and one integral ER
protein. ERMES acts in mitochondrial DNA (nucleoid) distribution
during fission (Murley et al., 2013). Interestingly, ERMES is
required for interaction between actin filaments and mitochondria
(Boldogh et al., 1998). Mitochondrial motility is actin-dependent in
budding yeast, and ERMES mutant strains lose this actin-
dependent mitochondrial motility (Boldogh et al., 2003; Burgess
et al., 1994; Sogo and Yaffe, 1994). ERMES is present at a subset
of, but not at all, fission sites (Murley et al., 2013), which could
suggest additional fission mechanisms in yeast.
Finally, we mention the slime mold Physarum. Although little is

known about mitochondrial fission here, the observation that fission
is inhibited by cytochalasin B (Kuroiwa and Kuroiwa, 1980)
suggests that actin might be involved.
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(Murley et al., 2013), but there are no clear mammalian ERMES
homologs. Mammalian proteins known or suspected to mediate

ER–mitochondrion interactions include PACS proteins (Simmen
et al., 2005) and Mfn2 [a mitochondrial fusion GTPase (de Brito
and Scorrano, 2008)], but it is unclear whether these act in fission.
Depending on the mechanism of INF2 activation at the ER–

mitochondrion interface, additional proteins might not be
necessary if INF2 itself provides transient ER–mitochondrial
tethering. Additionally, Drp1 itself could serve as the tether

through its ability to bind to both actin filaments and an OMM
receptor protein.

Are any additional actin-binding proteins involved in the

process? At a minimum, one likely protein is profilin, an
abundant cytosolic actin monomer binding protein. Profilin binds
to almost all formins, including INF2. The consequence of profilin

binding is an increase in the actin filament elongation rate from
formin-bound barbed ends (Paul and Pollard, 2009). Other classes
of actin-binding proteins that might be utilized for mitochondrial
fission are filament-stabilizing proteins, filament bundlers and

filament-depolymerizing factors (Blanchoin et al., 2014). In fission
yeast cytokinesis, the list of essential actin-binding proteins
includes one of each class – tropomyosin, IQGAP and cofilin

(Pollard, 2010). Because mammals contain homologs of each of
these in the form of multiple genes and/or splice variants, it is
possible that these factors are involved in mitochondrial fission.

Indeed, there is some evidence that cofilin participates in
mitochondrial dynamics in neurons (Beck et al., 2012).

Another possibly relevant actin-binding protein is Spire, an

actin-nucleation factor known to interact with formins of the
FMN/Cappucino family (Quinlan, 2013; Quinlan et al., 2007). A
particular splice variant of Spire is enriched on mitochondria, and
suppression of Spire function causes fission defects (Uri Manor

and Jennifer Lippincott-Schwartz, personal communication).
Spire and INF2 can interact directly, and Spire overexpression
causes increased association of mitochondria with INF2-

containing ER. How Spire and INF2 functionally interact in
mitochondrial fission is unclear, but one possibility is that Spire is
actually the actin nucleation factor, with INF2 serving

subsequently as an ER-tethered elongation factor that secures
barbed ends to ER, as well as participating in depolymerization.

Are microtubules involved in mitochondrial fission? Both INF2
and Drp1 can interact with microtubules. INF2 binds to

microtubules directly and in a manner that does not compete
with its actin polymerization or depolymerization activities
(Gaillard et al., 2011). Cellular localization studies show that

Drp1 can distribute along microtubules (Yoon et al., 1998), and a
recent study has shown that two of the eight Drp1 splice variants
bind to microtubules in cells (Strack et al., 2013). These results

provide food for thought as to whether there is a possibility for
Drp1-mediated crosstalk between microtubules and actin
filaments. However, the association of Drp1 with microtubules

or mitochondria appears to be mutually exclusive, as the
expression of microtubule-binding isoforms of Drp1 causes
elongated mitochondria. As shown in this study, CDK-mediated
phosphorylation of Drp1 reduces its binding to microtubules,

thereby allowing it to associate with mitochondria (Strack et al.,
2013). Taken together, the available evidence suggests that
microtubule binding would be inhibitory to mitochondrial fission

for some but not all Drp1 isoforms. It is also unclear whether Drp1
binds to microtubules directly or through a microtubule-associated
protein, but the former possibility appears to be more likely. A

possibly confounding issue is that metazoan mitochondria undergo

extensive microtubule-based transport, particularly in neurons
(Hollenbeck and Saxton, 2005), and it has been suggested that

microtubule-based transport might influence fission without
directly being involved in the fission process (Liu et al., 2009).

The possibility of multiple mammalian mitochondrial
fission mechanisms
Although all known mitochondrial fission requires Drp1,
eukaryotes vary greatly in the mechanisms used to recruit Drp1

(Box 2). Mammals are distinct from these eukaryotes in several
respects: they do not have FtsZ (found in plants), the PD/MD ring
(plants), ERMES subunits (yeast) or adaptors for the Fis1–Drp1

interaction (yeast), and the majority of known mitochondrial
translocation is microtubule-based (Hollenbeck and Saxton,
2005) (as opposed to that of budding yeast). Thus, there are

aspects of mitochondrial fission and dynamics that are not
universal between species.

We suspect that multiple mitochondrial fission mechanisms
exist in mammals, for the following reasons; (1) mitochondria

vary functionally and morphologically, (2) mutations in
mitochondrial fission or fusion proteins often affect only a
limited number of tissues, (3) mitochondria undergo fission for a

variety of purposes, and (4) there is extensive heterogeneity in
key fission proteins. Many of these issues have been discussed in
detail recently (Friedman and Nunnari, 2014; Hoppins and

Nunnari, 2012; Vafai and Mootha, 2012; Youle and van der
Bliek, 2012), and we especially recommend Vafai and Mootha
(2012) for its discussion of mitochondrial complexity and

heterogeneity. Here, we emphasize key points that are not
covered as extensively in these reviews.

Mitochondrial heterogeneity
Mammalian mitochondria clearly vary in morphology and
function, both between cells and within a single cell. Having
said that, some details of mitochondrial heterogeneity are poorly

understood. One morphological aspect of direct relevance to
fission is mitochondrial diameter. Diameters range between 150
and 300 nm in a variety of cells (Goldstein et al., 1984; Hu et al.,

2013; Jans et al., 2013; Kim et al., 2012; Noske et al., 2008;
Perkins and Ellisman, 2011; Vafai and Mootha, 2012), with a
narrow range of variation within a single cell type. These
diameters are far narrower than the 500–1000 nm estimates given

in some textbooks and reviews. There are suggestions that
mitochondria in certain tissues might have diameters of .500 nm
(see Fig. 3A in Vafai and Mootha, 2012), but we have been

unable to find systematic studies confirming these sizes. Even a
variability of 150 nm between cell types might necessitate
mechanistic differences in fission, both in the pre-constriction

mechanism (given the size of myosin II) and in Drp1-mediated
constriction (given the mechanics of force generation by the Drp1
oligomer).

Mitochondrial length can also be highly variable and is clearly
dependent on mitochondrial ‘health’, which influences the
fission/fusion balance (Youle and van der Bliek, 2012;
Hoppins and Nunnari, 2012; Friedman and Nunnari, 2014;

Nunnari and Suomalainen, 2012; Vafai and Mootha, 2012).
Having said that, the mechanisms by which changes in
mitochondrial homeostasis signal changes in fission and fusion

might be quite heterogeneous. Tangential to this discussion, a
little-examined phenomenon is mitochondrial ‘branching’.
Mitochondria can often exist in branched networks but the

mechanisms involved are poorly understood. What makes a
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mitochondrion become branched instead of linear? What
specifies the branch points?

Mitochondria are also functionally heterogeneous. For
example, there is clear metabolic diversity between tissues (e.g.
slow-twitch muscle is efficient at b-oxidation whereas neuronal
cells are not). This heterogeneity is exemplified in mitochondrial

proteomes, where ,25% of the ,1400 proteins vary between
tissues (Vafai and Mootha, 2012). Even within an individual cell,
mitochondria can vary (Chang and Reynolds, 2006; Cogswell

et al., 1993; Collins and Bootman, 2003). The varying metabolic
functions and requirements of individual mitochondria might
necessitate differential morphology and, hence, mechanistic

differences in fission.

Effects of mutations of mitochondrial fission or fusion proteins
One remarkable aspect of human mitochondria is that mutations in
ubiquitous proteins can lead to tissue-specific diseases (Vafai and
Mootha, 2012). An example related to mitochondrial dynamics is
that mutations in two GTPases involved in fusion lead to distinct

neuronal abnormalities, with mutations in Mfn2 leading to Charcot-
Marie-Tooth disease (CMTD) and mutations in Opa1 leading to
optic nerve atrophy (Chen and Chan, 2009). For mitochondrial

fission, mutations in INF2 can lead to either focal segmental
glomerulosclerosis (FSGS), a kidney disease (Brown et al., 2010),
or to a combination of FSGS and CMTD (Boyer et al., 2011). One

possibility is that these tissue-specific effects might reflect the
relevance of an INF2-dependent fission mechanism in these tissues.

Heterogeneity of fission stimuli
The mitochondrial fission machinery is used for at least two
purposes – to maintain the cellular distribution of mitochondria and
to promote cellular homeostasis. The latter purpose fulfills two

roles – fission that leads to mitophagy and fission components that
act in apoptosis. Because there has been much discussion of these
pathways (Youle and van der Bliek, 2012; Hoppins and Nunnari,

2012; Friedman and Nunnari, 2014; Nunnari and Suomalainen,
2012; Archer, 2013), we will not address them in depth. We
mention, however, that Mff and Fis1 appear to act in distinct steps

of mitophagy, with Mff being required for an initial Drp1-
dependent fission step, whereas Fis1 is required for a second
fission step (Shen et al., 2014; Yamano et al., 2014). Both steps
appear to occur at ER–mitochondrion contact sites and require

Drp1 (Shen et al., 2014). There has also been evidence for actin
involvement at mitochondria in both apoptosis and mitochondrial
distribution. For apoptosis, both cofilin and CAP1 (actin-binding

proteins) translocate to mitochondria in response to certain
apoptotic stimuli (Wang et al., 2008; Roh et al., 2013; Li et al.,
2013). In addition, a pro-apoptotic factor, KIP2, has clear effects

on the actin cytoskeleton that are necessary for mitochondrial
apoptotic signaling (Kavanagh et al., 2012). For cellular
distribution, recent results show actin filament accumulation on

the OMM during mitochondrial fission at the G2/S transition (M.
Karbowski, personal communication).

Heterogeneity of key fission proteins
Two key components of mitochondrial fission are highly
heterogeneous – Drp1 receptors and Drp1 itself. This
heterogeneity occurs at several levels – multiple proteins

serving the same apparent function (Drp1 receptors), multiple
splice variants (of both Drp1 and Drp1 receptors) and multiple
post-translational modifications (Drp1). These variations could

simply suggest regulatory heterogeneity for a common fission

process, but might also suggest mechanistic heterogeneity in the
fission process itself.

At least four proteins can act as Drp1 receptors on the OMM
(Fig. 1B) – Fis1, Mff, MiD49 and MiD51. We also mention a fifth
OMM protein, GDAP1, that is enriched in neurons and appears to
play a role in fission, but its role is as yet undefined (Niemann

et al., 2005; Niemann et al., 2009). Interestingly, GDAP1
mutations can lead to CMTD. Evidence for differential function
between the known Drp1 receptors is beginning to accumulate. For

example, both Mff and MiD49/51 have been shown to mediate
mitochondrial fission independently, but only Mff (not MiD49/51)
has a role in peroxisome fission (Losón et al., 2013; Palmer et al.,

2013). By contrast, MiD51, but not Mff, Fis1 or MiD49, appears to
be essential for fission that is stimulated by the electron transport
chain inhibitor antimycin A (Losón et al., 2014).

Variation in Drp1-dependent fission pathways might also occur
as a consequence of the eight Drp1 splice variants known to exist
in mammalian cells. The expression levels of these isoforms vary
significantly between tissues, thereby providing the possibility of

altered mechanistic preferences between tissues (Strack et al.,
2013). It is unclear whether microtubule-binding splice variants
of Drp1 might engage in crosstalk with actin or might compete

with actin. We point out that several Drp1 receptors also exist as
multiple splice variants (Gandre-Babbe and van der Bliek, 2008).

In addition, we have entirely ignored the role of post-

translational modifications of Drp1 in regulating fission,
although it is well known that Drp1 is extensively modified by
phosphorylation, sumoylation, ubiquitylation, and S-nitrosylation

(Braschi et al., 2009; Chang and Blackstone, 2010). Drp1
phosphorylation affects its function in several ways (Losón
et al., 2013; Shen et al., 2014; Strack et al., 2013). Interestingly,
ROCK phosphorylates and activates Drp1, and triggers

mitochondrial fission in response to hyperglycemia in kidney
podocytes and endothelial cells (Wang et al., 2012). Because
ROCK can also activate myosin II, it could activate two

components of the fission process in this case.

Predicting possible routes to mitochondrial fission
We suspect there are two levels of variation in mitochondrial fission;
(1) Drp1-dependent versus Drp1-independent pathways, and (2)
variations within a Drp1-dependent pathway. There is no clear
evidence for Drp1-independent pathways, apart from the

observation that Drp1-null mouse embryonic fibroblasts (MEFs)
are viable (Losón et al., 2013), suggesting that some fission takes
place in the absence of Drp1 to maintain partitioning during division.

Regarding the second level of variation, one could envisage
multiple mechanisms to recruit Drp1 at fission sites, specified
both by the particular OMM-bound Drp1 receptor and by the

specific coincidence detector, such as actin filaments or
cardiolipin. Both actin filaments and cardiolipin stimulate the
GTPase activity of Drp1 [(Macdonald et al., 2014); our

unpublished results] and could accumulate at the fission site
through distinct signals (ER contact for actin, IMM–OMM
communication for cardiolipin). It is unclear which Drp1
receptor(s) would operate with which coincidence detector,

although it is interesting that overexpression of MiD51 causes
actin filament accumulation around mitochondria (Palmer et al.,
2011). Of note, MiD49 and MiD51 recruit Drp1 to mitochondria

in its inactive phosphorylated state (Losón et al., 2013),
suggesting that MiD49 or MiD51 might serve to prime certain
sites for fission, which is then triggered upon a second signal

(dephosphorylation of Drp1).
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Finally, more than one actin-dependent fission pathway might
exist, including those that do not use INF2 and/or myosin II.

Three results support this statement. First, myosin V mutants
cause mitochondrial elongation in Drosophila neurons (Pathak
et al., 2010), raising the possibility of myosin-V-dependent
fission. Second, budding yeast do not express INF2 yet clearly

undergo ERMD, perhaps using actin-binding subunits of the
ERMES complex (Murley et al., 2013). Third, recent evidence
suggests that cortactin plays a role in mammalian fission

under certain conditions (M. Karbowski, personal
communication). Cortactin is a protein generally linked to
polymerization-based force generation through the Arp2/3

complex (Blanchoin et al., 2014), so this might represent an
alternative pathway to the INF2–myosin II pathway.
Alternatively, the Arp2/3 complex might be the actin nucleator

in the INF2–myosin II pathway, although one study has shown
that Arp2/3 complex inhibition has no apparent effect on
mitochondrial size (Korobova et al., 2014).

We should also mention myosin 19, which binds to mitochondria

and mediates their translocation (Quintero et al., 2009). Although
there is no current evidence for a role of myosin 19 in mitochondrial
fission, some of the studies in the literature (including ours)

(Korobova et al., 2014; DuBoff et al., 2012) could have
inadvertently inhibited myosin 19 instead of (or in addition to)
myosin II, because myosin 19 has the same regulatory light chain

(RLC) as myosin II (Lu et al., 2014). However, the effects observed
upon suppression of the myosin II heavy chain suggest that the
fission effects are indeed specific for myosin II (Korobova et al.,

2014). A general take-home message is that there are many myosins
(over 20 classes), and in many cases their functions and relevant
light chains are unknown (Berg et al., 2001). Of note here is the
presumed myosin-II-specific inhibitor blebbistatin, which has only

been tested against four myosin classes (Limouze et al., 2004).

Final thoughts
In summary, we hypothesize that multiple pathways for
mammalian mitochondrial fission might exist. Most mechanisms
are likely to depend on Drp1 and could use coincidence detection

of two signals, an OMM Drp1 receptor and a second signal (e.g.
actin filaments or OMM-exposed cardiolipin). Finally, signals such
as actin filaments might work similarly to the PD ring found for
plant plastids (see Box 2) to template productive Drp1

oligomerization at the fission site.
One issue to bear in mind when examining a role for actin

filaments in any membrane-based process is that they might be

short and extremely transient. For this reason, their presence might
be easily overlooked amongst other more abundant actin-based
structures. Frustrations over identifying the presence or

morphology of actin filaments have been common historically,
examples being leading edge actin filament morphology, nuclear
actin filaments and actin in Plasmodium (Belin and Mullins, 2013;

Kudryashev et al., 2010; Ydenberg et al., 2011). Many imaging
techniques, especially electron microscopy, present challenges for
imaging short low-abundance filament populations (Kudryashev
et al., 2010; Lehrer, 1981; Maupin and Pollard, 1983). For this

reason, and because both actin-dependent and actin-independent
mechanisms could exist, we predict some controversy over the role
of actin in mitochondrial fission in the immediate future.
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