71 research outputs found

    Mesoscopic anisotropic magnetoconductance fluctuations in ferromagnets

    Full text link
    The conductance of a ferromagnetic particle depends on the relative orientation of the magnetization with respect to the direction of current flow. This phenomenon is known as "anisotropic magnetoresistance". Quantum interference leads to an additional, random dependence of the conductance on the magnetization direction. These "anisotropic magnetoresistance fluctuations" are caused by spin-orbit scattering, which couples the electron motion to the exchange field in the ferromagnet. We report a calculation of the dependence of the conductance autocorrelation function on the rotation angle of the magnetization direction.Comment: 4 pages, 3 figures, revtex

    Spatial and temporal plant phenological niche differentiation in the Wadi Degla desert ecosystem (Egypt)

    Get PDF
    Twenty dominant plant species representing different life forms were investigated phenologically over a period of 36 months (January 2004 to December 2006). Plant populations were sampled at down-, mid-, and upstream sites in a desert wadi ecosystem. The results were analyzed using TWINSPAN, DCA and CCA techniques. Five phenological niches were apparent: (1) species flowering all year round, with peaks in spring and autumn such as Ochradenus baccatus; (2) species flowering during winter including Lycium shawii and Tamarix nilotica; (3) species flowering during spring, e.g., Zilla spinosa, Zygophyllum coccineum and Capparis spinosa; (4) species flowering during summer including Iphiona mucronata and Deverra triradiata; and (5) species flowering during autumn that include Atriplex halimus and two Anabasis species. The climatic variables, including temperature, rainfall and relative humidity, affect the phenological niches and between-species differences. Within-species variations occurred between years and there were no between-site variations for most study species. The different plant species exhibited phenological diversity along the course of the wadi ecosystem. The phenological niches are species-specific and environmentally dependent rather than local selective pressures

    Gas flow assisted powder deposition for enhanced flowability of fine powders: 3D printing of \u3b1-tricalcium phosphate

    No full text
    The possibility of creating patient-specific individual implants makes Additive Manufacturing technologies of special interest for the medical sector. For substitution of bone defects, powder based Additive Manufacturing by Binder Jetting is a suitable method to produce complex scaffold-like structures made of bioceramics with easily adapted geometries and controlled porosity. The process inherent residual porosity in the printed part, even though desired as it supports bone ingrowth, also leads to limited mechanical strength. Currently, bioceramic scaffolds made by Binder Jetting feature suitable biocompatible and biodegradable properties, while a sufficient mechanical stability is rather challenging. The purpose of this work is to apply the gas flow assisted powder deposition introduced in 2014 by Zocca et al., to the powder bed during printing of bioceramic tablets and scaffolds using \u3b1-TCP powder as feedstock. This enables exploiting the advantages of an increased powder bed density, thereby improving the mechanical properties of the printed parts

    C-Terminal binding protein is a transcriptional repressor that interacts with a specific class of vertebrate Polycomb proteins.

    No full text
    Item does not contain fulltextPolycomb (Pc) is part of a Pc group (PcG) protein complex that is involved in repression of gene activity during Drosophila and vertebrate development. To identify proteins that interact with vertebrate Pc homologs, we performed two-hybrid screens with Xenopus Pc (XPc) and human Pc 2 (HPC2). We find that the C-terminal binding protein (CtBP) interacts with XPc and HPC2, that CtBP and HPC2 coimmunoprecipitate, and that CtBP and HPC2 partially colocalize in large PcG domains in interphase nuclei. CtBP is a protein with unknown function that binds to a conserved 6-amino-acid motif in the C terminus of the adenovirus E1A protein. Also, the Drosophila CtBP homolog interacts, through this conserved amino acid motif, with several segmentation proteins that act as repressors. Similarly, we find that CtBP binds with HPC2 and XPc through the conserved 6-amino-acid motif. Importantly, CtBP does not interact with another vertebrate Pc homolog, M33, which lacks this amino acid motif, indicating specificity among vertebrate Pc homologs. Finally, we show that CtBP is a transcriptional repressor. The results are discussed in terms of a model that brings together PcG-mediated repression and repression systems that require corepressors such as CtBP

    C-Terminal binding protein is a transcriptional repressor that interacts with a specific class of vertebrate Polycomb proteins.

    No full text
    Item does not contain fulltextPolycomb (Pc) is part of a Pc group (PcG) protein complex that is involved in repression of gene activity during Drosophila and vertebrate development. To identify proteins that interact with vertebrate Pc homologs, we performed two-hybrid screens with Xenopus Pc (XPc) and human Pc 2 (HPC2). We find that the C-terminal binding protein (CtBP) interacts with XPc and HPC2, that CtBP and HPC2 coimmunoprecipitate, and that CtBP and HPC2 partially colocalize in large PcG domains in interphase nuclei. CtBP is a protein with unknown function that binds to a conserved 6-amino-acid motif in the C terminus of the adenovirus E1A protein. Also, the Drosophila CtBP homolog interacts, through this conserved amino acid motif, with several segmentation proteins that act as repressors. Similarly, we find that CtBP binds with HPC2 and XPc through the conserved 6-amino-acid motif. Importantly, CtBP does not interact with another vertebrate Pc homolog, M33, which lacks this amino acid motif, indicating specificity among vertebrate Pc homologs. Finally, we show that CtBP is a transcriptional repressor. The results are discussed in terms of a model that brings together PcG-mediated repression and repression systems that require corepressors such as CtBP
    corecore