7,372 research outputs found

    Revivification of confinement resonances in the photoionization of AA@C60_{60} endohedral atoms far above thresholds

    Full text link
    It is discovered theoretically that significant confinement resonances in an nlnl photoionization of a \textit{multielectron} atom AA encaged in carbon fullerenes, A@C60_{60}, may re-appear and be strong at photon energies far exceeding the nlnl ionization threshold, as a general phenomenon. The reasons for this phenomenon are unraveled. The Ne 2p2p photoionization of the endohedral anion Ne@C605_{60}^{5-} in the photon energy region of about a thousand eV above the 2p2p threshold is chosen as case study.Comment: 3 pages, 1 figure, Revtex

    Mincer-zarnovitz quantile and expectile regressions for forecast evaluations under asymmetric loss functions: Working paper series--14-01

    Get PDF
    Forecast is pervasive in all areas of applications in business and daily life and, hence, evaluating the accuracy of a forecast is important for both the generators and consumers of forecasts. There are two aspects in forecast evaluation: (1) measuring the accuracy of past forecasts using some summary statistics and (2) testing the optimality properties of the forecasts through some diagnostic tests. On measuring the accuracy of a past forecast, we illustrate that the summary statistics used should match the loss function that was used to generate the forecasts. If there is strong evidence that an asymmetric loss function has been used in the generation of a forecast, then a summary statistic that corresponds to that asymmetric loss function should be used in assessing the accuracy of the forecast instead of the popular RMSE or MAE. On testing the optimality of the forecasts, we demonstrate how the quantile regressions and expectile regressions set in the prediction-realization framework of Mincer and Zarnowitz (1969) can be used to recover the unknown parameter that controls the potentially asymmetric loss function used in generating the past forecasts. Finally, we apply the prediction-realization framework to the Federal Reserve's economic growth forecast and forecast sharing in a PC manufacturing supply chain. We find that the Federal Reserves values over prediction approximately 1.5 times more costly than under prediction. We also find that the PC manufacturer weighs positive forecast errors (under forecasts) about four times as costly as negative forecast errors (over forecasts)

    Highly senstivive determination of 2.4,6-Trinitrotolunene and Related Byproducts Using a Diol Functionalized Column for High Performance Liquid Chromatography

    Get PDF
    Cataloged from PDF version of article.In this work, a new detection method for complete separation of 2,4,6-trinitrotoluene (TNT); 2,4-dinitrotoluene (2,4-DNT); 2,6-dinitrotoluene (2,6-DNT); 2-aminodinitrotoluene (2-ADNT) and 4-aminodinitrotoluene (4-ADNT) molecules in high-performance liquid-chromatography (HPLC) with UV sensor has been developed using diol column. This approach improves on cost, time, and sensitivity over the existing methods, providing a simple and effective alternative. Total analysis time was less than 13 minutes including column re-equilibration between runs, in which water and acetonitrile were used as gradient elution solvents. Under optimized conditions, the minimum resolution between 2,4-DNT and 2,6-DNT peaks was 2.06. The recovery rates for spiked environmental samples were between 95-98%. The detection limits for diol column ranged from 0.78 to 1.17 μg/L for TNT and its byproducts. While the solvent consumption was 26.4 mL/min for two-phase EPA and 30 mL/min for EPA 8330 methods, it was only 8.8 mL/min for diol column. The resolution was improved up to 49% respect to two-phase EPA and EPA 8330 methods. When compared to C-18 and phenyl-3 columns, solvent usage was reduced up to 64% using diol column and resolution was enhanced approximately two-fold. The sensitivity of diol column was afforded by the hydroxyl groups on polyol layer, joining the formation of charge-transfer complexes with nitroaromatic compounds according to acceptor-donor interactions. Having compliance with current requirements, the proposed method demonstrates sensitive and robust separation. © 2014 Gumuscu et al

    Slow release and delivery of antisense oligonucleotide drug by self-assembled peptide amphiphile nanofibers

    Get PDF
    Cataloged from PDF version of article.Antisense oligonucleotides provide a promising therapeutic approach for several disorders including cancer. Chemical stability, controlled release, and intracellular delivery are crucial factors determining their efficacy. Gels composed of nanofibrous peptide network have been previously suggested as carriers for controlled delivery of drugs to improve stability and to provide controlled release, but have not been used for oligonucleotide delivery. In this work, a self-assembled peptide nanofibrous system is formed by mixing a cationic peptide amphiphile (PA) with Bcl-2 antisense oligodeoxynucleotide (ODN), G3139, through electrostatic interactions. The self-assembly of PA-ODN gel was characterized by circular dichroism, rheology, atomic force microscopy (AFM) and scanning electron microscopy (SEM). AFM and SEM images revealed establishment of the nanofibrous PA-ODN network. Due to the electrostatic interactions between PA and ODN, ODN release can be controlled by changing PA and ODN concentrations in the PA-ODN gel. Cellular delivery of the ODN by PA-ODN nanofiber complex was observed by using fluorescently labeled ODN molecule. Cells incubated with PA-ODN complex had enhanced cellular uptake compared to cells incubated with naked ODN. Furthermore, Bcl-2 mRNA amounts were lower in MCF-7 human breast cancer cells in the presence of PA-ODN complex compared to naked ODN and mismatch ODN evidenced by quantitative RT-PCR studies. These results suggest that PA molecules can control ODN release, enhance cellular uptake and present a novel efficient approach for gene therapy studies and oligonucleotide based drug deliver

    Template-Directed Synthesis of Silica Nanotubes for Explosive Detection

    Get PDF
    Cataloged from PDF version of article.Fluorescent porous organic-inorganic thin films are of interest of explosive detection because of their vapor phase fluorescence quenching property. In this work, we synthesized fluorescent silica nanotubes using a biomineralization process through self-assembled peptidic nanostructures. We designed and synthesized an amyloid-like peptide self-assembling into nanofibers to be used as a template for silica nanotube formation. The amine groups on the peptide nanofibrous system were used for nucleation of silica nanostructures. Silica nanotubes were used to prepare highly porous surfaces, and they were doped with a fluorescent dye by physical adsorption for explosive sensing. These porous surfaces exhibited fast, sensitive, and highly selective fluorescence quenching against nitro-explosive vapors. The materials developed in this work have vast potential in sensing applications due to enhanced surface area. © 2011 American Chemical Society

    Population screening and transmission experiments indicate paramyxid-microsporidian co-infection in Echinogammarus marinus represents a non-hyperparasitic relationship between specific parasite strains

    Get PDF
    Phylogenetically distant parasites often infect the same host. Indeed, co-infections can occur at levels greater than expected by chance and are sometimes hyperparasitic. The amphipod Echinogammarus marinus presents high levels of co-infection by two intracellular and vertically transmitted parasites, a paramyxid (Paramarteilia sp. Em) and a microsporidian strain (Dictyocoela duebenum Em). This co-infection may be hyperparasitic and result from an exploitative ‘hitchhiking’ or a symbiotic relationship between the parasites. However, the best-studied amphipod species are often collected from contaminated environments and may be immune-compromised. Immune-challenged animals frequently present co-infections and contaminant-exposed amphipods present significantly higher levels of microsporidian infection. This suggests the co-infections in E. marinus may result from contaminant-associated compromised immunity. Inconsistent with hyperparasitism, we find that artificial infections transmit Paramarteilia without microsporidian. Our population surveys reveal the co-infection relationship is geographically widespread but find only chance co-infection between the Paramarteilia and another species of microsporidian, Dictyocoela berillonum. Furthermore, we identify a haplotype of the Paramarteilia that presents no co-infection, even in populations with otherwise high co-infection levels. Overall, our results do not support the compromised-immunity hypothesis but rather that the co-infection of E. marinus, although non-hyperparasitic, results from a relationship between specific Paramarteilia and Dictyocoela duebenum strains

    Oligonucleotide delivery with cell surface binding and cell penetrating peptide amphiphile nanospheres

    Get PDF
    Cataloged from PDF version of article.A drug delivery system designed specifically for oligonucleotide therapeutics can ameliorate the problems associated with the in vivo delivery of these molecules. The internalization of free oligonudeotides is challenging, and cytotoxicity is the main obstacle for current transfection vehicles. To develop nontoxic delivery vehicles for efficient transfection of oligonudeotides, we designed a self-assembling peptide amphiphile (PA) nanosphere delivery system decorated with cell penetrating peptides (CPPs) containing multiple arginine residues (R-4 and R-8), and a cell surface binding peptide (KRSR), and report the efficiency of this system in delivering G-3129, a Bcl-2 antisense oligonucleotide (AON). PA/AON (peptide amphiphile/antisense oligonucleotide) complexes were characterized with regards to their size and secondary structure, and their cellular internalization efficiencies were evaluated. The effect of the number of arginine residues on the cellular internalization was investigated by both flow cytometry and confocal imaging, and the results revealed that uptake efficiency improved as the number of arginines in the sequence increased. The combined effect of cell penetration and surface binding property on the cellular internalization and its uptake mechanism was also evaluated by mixing R-8-PA and KRSR-PA. R-8 and R-8/KRSR decorated PAs were found to drastically increase the internalization of AONs compared to nonbioactive PA control. Overall, the KRSR-decorated self-assembled PA nanospheres were demonstrated to be noncytotoxic delivery vectors with high transfection rates and may serve as a promising delivery system for AONs

    GIS AND FUZZY AHP BASED AREA SELECTION FOR ELECTRIC VEHICLE CHARGING STATIONS

    Get PDF
    Significant work is being done to protect the world and ecosystem. Innovative approaches are being explored to reduce the harm of the methods used to sustain life. Mobility is an essential issue that affects people and society in today's life. Automobiles are the most commonly used vehicle for mobility in private life and public service activities such as transportation. One of the important subjects that should be applied to environmentally sensitive methods is transportation. One of the major problems encountered today is the harmful effects of internal combustion motor vehicles. Electric vehicles are preferred because they work efficiently and with the least damaging effect on the environment. The location of electric vehicles is a complicated problem because it depends on many different factors. In this study, fuzzy analytical hierarchy process (Fuzzy AHP) as multi-criteria decision-making (MCDM) methods and geographic information systems (GIS) to manage data which can be used for the location selection of electric vehicles charging stations are researched. The study area was determined by three neighboring districts boundaries city of Istanbul in Turkey
    corecore