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Abstract 15 

In the past decade, there have been increasing concerns over the effects of pharmaceutical 16 

compounds in the aquatic environment, however very little is known about the effects of 17 

antidepressants such as the Selective Serotonin Re-uptake Inhibitors (SSRIs). Many 18 

biological functions within invertebrates are under the control of serotonin, such as 19 

reproduction, metabolism, moulting and behaviour. The effects of serotonin and fluoxetine 20 

have recently been shown to alter the behaviour of the marine amphipod, Echinogammarus 21 

marinus (Leach, 1815). The purpose of this study was to observe behavioural and 22 

transcriptional modifications in this crustacean exposed to the two most prescribed SSRIs 23 

(fluoxetine and sertraline) and to develop biomarkers of neurological endocrine disruption. 24 

The animals were exposed to both drugs at environmentally relevant concentrations from 25 

0.001 to 1 μg/L during short-term (1 hour and 1 day) and medium-term (8 days) experiments. 26 

The movement of the amphipods was tracked using the behavioural analysis software during 27 

12 min alternating dark/light conditions. The behavioural analysis revealed a significant 28 

effect on velocity which was observed after 1 hour exposure to sertraline at 0.01 μg/L and 29 

after 1 day exposure to fluoxetine as low as 0.001 μg/L. The most predominant effect of 30 

drugs on velocity was recorded after 1 day exposure for the 0.1 and 0.01 μg/L concentrations 31 

of fluoxetine and sertraline, respectively. Subsequently, the expression of several E. marinus 32 

neurological genes, potentially involved in the serotonin metabolic pathway or behaviour 33 

regulation, were analysed in animals exposed to various SSRIs concentrations using RT-34 

qPCR. The expression of a tryptophan hydroxylase (Ph), a neurocan core protein (Neuc), a 35 

Rhodopsin (Rhod1) and an Arrestin (Arr) were measured following exposure to fluoxetine or 36 

sertraline for 8 days. The levels of Neuc, Rhod1 and Arr were significantly down-regulated to 37 

approximately 0.5, 0.29 and 0.46 fold respectively for the lower concentrations of fluoxetine 38 

suggesting potential changes in the phototransduction pathway. The expression of Rhod1 39 

tended to be up-regulated for the lower concentration of sertraline but not significantly. In 40 

summary, fluoxetine and sertraline have a significant impact on the behaviour and 41 

neurophysiology of this amphipod at environmentally relevant concentrations with effects 42 

observed after relatively short periods of time.  43 

Keywords: Antidepressants, SSRIs, Neuro-endocrine disruptor, Behaviour, Biomarker, 44 

Crustacean 45 

 46 
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1. Introduction 47 

The issue of anthropogenic contaminants released in the aquatic environment acting as 48 

endocrine disruptors has been well studied, but the research effort has mainly consisted of the 49 

study of estrogenic substances and their effects on vertebrates (Hutchinson 2007; Weltje and 50 

Schulte-Oehlmann 2007). The increasing use (over 60% in just the past decade) of 51 

antidepressants, the improper disposal of unused pharmaceuticals, and their limited 52 

biodegradability has raised concerns about their potential effects in the aquatic environment 53 

(Demeestere et al. 2010; Santos et al. 2010). Antidepressants represent about 4% of the 54 

therapeutic drugs found in the environment, and are present in coastal waters and estuaries 55 

(Santos et al. 2010). Indeed, 30 to 90% of ingested drugs are excreted and released in the 56 

environment in an active form (Kashiyama et al. 2010) which can potentially have an impact 57 

on the organisms that inhabit these areas.  58 

Much is still unknown about the ecotoxicological effects of pharmaceutical and personal care 59 

products in aquatic organisms (Crane et al. 2006; Santos et al. 2010). However, recent 60 

concerns regarding the impact of antidepressants, especially selective serotonin re-uptake 61 

inhibitors (SSRIs), on aquatic organisms has been increasing (Johnson et al. 2007; Minagh et 62 

al. 2009; Demeestere et al. 2010; Guler and Ford 2010; Styrishave et al. 2011). SSRIs inhibit 63 

the serotonin re-uptake into the pre-synaptic nerve inducing an increased neuro-stimulation of 64 

the post-synaptic nerve (Stahl 1998). These compounds act by modulating or mimicking the 65 

effects of serotonin (Santos et al. 2010). Since its approval by the US Food and Drug 66 

Administration in 1987, fluoxetine has become one of the most widely prescribed 67 

antidepressants, being in the top five psychiatric drugs prescribed in 2011 after citalopram 68 

and sertraline (Grohol 2012). Fluoxetine and sertraline are both SSRIs, primarily prescribed 69 

for depression but also used to treat compulsive behaviour, social anxiety, panic and 70 

personality disorders (AHFS 2013). 71 

These drugs have been detected in the surface water and in wastewater effluent respectively 72 

at levels up to 0.54 μg/L and 0.929 μg/L for fluoxetine and up to 0.08 μg/L and 0.087 μg/L 73 

for sertraline (Brooks et al. 2003; Metcalfe et al. 2010; Styrishave et al. 2011; Silva et al. 74 

2012). Fluoxetine has also been detected in groundwater at 0.056 μg/L (Silva et al. 2012). 75 

The only record of fluoxetine in seawater is in the Chesapeake Bay (Maryland, Virginia, 76 

USA) at 0.0026 μg/L (Pait et al. 2006). These findings make it clear that animals inhabiting 77 

aquatic ecosystems impacted by sewage effluent can be/are subjected to chronic exposure to 78 

SSRIs. Concentrations of fluoxetine and its metabolite norfluoxetine has been found at 79 
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extremely high level (10 μg/kg) relative to the environmental background in the tissues of 80 

fish collected near a municipal wastewater treatment plant, suggesting that these compounds 81 

have the capacity to bioaccumulate (Orem and Dolph 2002). The chronic effects of SSRIs on 82 

aquatic life are diverse (Brooks et al. 2003). For example, negatives impacts of fluoxetine 83 

have been found on the reproduction and growth of invertebrates, vertebrates as well as algae 84 

(Péry et al. 2008; Lister et al. 2009; Santos et al. 2010). The effects of sertraline on aquatic 85 

organisms have been less studied. According to several studies comparing the effects of 86 

SSRIs on diverse species, sertraline is the most toxic, seemingly more potent on daphnia 87 

species than on fish (Christensen et al. 2007; Paterson and Metcalfe 2008; Minagh et al. 88 

2009).  89 

The majority of studies on the impact of antidepressants within invertebrates have focused on 90 

reproduction and growth effects but few data sets are available on their behavioural effects 91 

(Fong 1998; Péry et al. 2008; Gust et al. 2009; Minagh et al. 2009; Campos et al. 2012b). 92 

Behavioural studies provide a link between physiological and ecological impacts, providing a 93 

major endpoint to assess population health and fitness (Craddock and Sklar 2013). Light is 94 

critical to a diverse range of behavioural and physiological processes such as diurnal rhythms, 95 

reproduction and predator avoidance (Henry et al. 2004). Indeed, light exposure regulates 96 

several neuro-modulatory systems; the activation of diverse photo-receptors modulates 97 

neurological components which in turn adjust behaviour. Serotonin, also named 5-98 

hydroxytryptamine (5-HT), acts as a neurotransmitter or a hormone depending on its location 99 

and is a common modulator of animal behaviour in response to light. It is involved in many 100 

biological endpoints in invertebrates, such as growth, maturation, reproduction, visual 101 

perception and behaviour (Cezilly et al. 2000; Campos et al. 2012a). It has recently been 102 

demonstrated that exogenous serotonin and fluoxetine in amphipods increase phototaxis 103 

activity (Guler and Ford 2010). Acanthocephalan and trematode parasites can also act by 104 

increasing the serotonergic activity leading to an increase in phototaxis activity (Tierney et al. 105 

2004; De Lange et al. 2006; Guler and Ford 2010; Underwood et al. 2010) which can 106 

increase susceptibility to predation (Cezilly et al. 2000; Lagrue et al. 2007; Perrot-Minnot et 107 

al. 2007). Guler and Ford (2010) suggested that altered phototaxis behaviour in amphipods 108 

following SSRI exposure could then conceivably make them more prone to predation. 109 

Gammarid amphipods are fundamental to many food chains and have an important role in 110 

ecosystem dynamics (Donner et al. 1994). Therefore, they have often been used in 111 

ecotoxicology studies, being considered as excellent bioindicators to monitor the health of 112 



5 

 

aquatic biotopes and the effects of anthropogenic contaminants (De Lange et al. 2006; Felten 113 

et al. 2008; De Lange et al. 2009; Guler and Ford 2010; Issartel et al. 2010). 114 

Echinogammarus marinus (Leach, 1815) is a ubiquitous intertidal marine amphipod which is 115 

widely found throughout the coasts of northwest Europe. The aim of this study was to 116 

develop behavioural biomarkers of SSRI antidepressants exposure and elucidate the 117 

molecular mechanism of action through components of the serotonin pathway. 118 

 119 

2. Materials and methods 120 

2.1.  Animals and exposure experiment 121 

Echinogammarus marinus were collected on the intertidal zone beneath seaweed and stones 122 

at low tide from Langstone Harbour, Portsmouth, UK (50º47’23.13N 1º02’37.25W).  This 123 

area is used for light recreational sailing and is a Special Protection Area (SPA), Site of 124 

Special Scientific Interest (SSSI) and Special Area of Conservation (SAC) due to the use of 125 

expansive mudflats by wading birds. Animals were sorted and adult males with no visual sign 126 

of infection by trematodes (incorrectly reported as acanthocephalans by Guler and Ford, 127 

2010) were isolated. These parasitised individuals were excluded for their known impacts on 128 

host behaviour in response to light and modulation of serotonin in some species. The 129 

amphipods were kept individually in plastic containers filled with 80 mL of mechanical-130 

filtrated natural seawater (from Langstone Harbour) at 10 °C under a 12 hrs light/12 hrs dark 131 

photoperiod and fed with fucoid seaweed.  132 

After a week of acclimation, amphipods were exposed to the antidepressants fluoxetine and 133 

sertraline. In addition to an unexposed control group of 30 animals, groups of 15 animals 134 

were exposed to four nominal concentrations (0.001, 0.01, 0.1 and 1 μg/L) of each 135 

compound. Mortality was recorded and water was renewed every 3 d. Both fluoxetine (CAS 136 

no. 56296-78-7) and sertraline (CAS no. 79559-97-0) were obtained from Sigma-Aldrich
®
 137 

(St. Louis, MO, USA). 138 

2.2.  Behavioural analysis 139 

Behavioural assays were performed after 1 hr, 1 d and 8 d of exposure to each condition 140 

using DanionVision
TM

 (Noldus Information Technology, Wageningen, The Netherlands) and 141 

its software EthoVision
®
 XT. Animals were put in 6-wells plates and placed within the 142 

DanioVision hardware for 2 min to allow settling prior to recording. The velocity (mm/s) 143 
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measurements of amphipods were recorded every 0.1 second (s) during 3 cycles of 2 minutes 144 

(min) dark and 2 min light, thus for a total period of 12 min (Fig. 1). 145 

Due to the complexity of the dataset, an average velocity of every 10 s of the raw data were 146 

used to make heat maps for each condition by highlighting in green the 5th percentile, in 147 

black the 50th percentile and in red the 95th percentile (percentile calculated on the entire 148 

pool of data). This enabled a visual representation of periods when the amphipods were very 149 

active (red) or inactive (green). Statistical analyses were conducted using SPSS
®
 Statistics 150 

v.20.0.0 software (IBM
®

) on the velocity of each amphipod during the 3 time periods (1 hr, 1 151 

d and 8 d) of behavioural assays. The data was normalised with a cube-root transformation 152 

and tested using a Kolmogorov-Smirnov test. Repeated Measure Analysis of Variance 153 

(ANOVA) with Dunnett multiple comparison tests was used to determine whether significant 154 

differences occurred over the 12 min recording period and between concentrations for both 155 

drugs. This enabled us to determine whether the velocity of the amphipods changed over the 156 

12 min dark/light regime, with SSRI concentrations or an interaction occurred between time 157 

and concentration. Within subject factors (time over the dark-light cycles and interactions 158 

between time and concentration) were tested using the Greenhouse-Geisser adjustments 159 

whereby sphericity of data is not assumed. All statistical analysis used a significance level of 160 

p < 0.05.  161 

2.3.  DNA/RNA isolation, purification and reverse transcription 162 

After the 8 d behavioural assays, animals were anaesthetised using a mixture of clove oil and 163 

seawater (0.2 μL/mL). The head of each amphipod was rapidly dissected, snap frozen in 164 

liquid nitrogen and stored in Tri Reagent
®
 (Ambion

®
, Life Technologies, Carlsbad, CA, 165 

USA) at -80 °C before the extraction. DNA and RNA were extracted according to the 166 

manufacturer protocol and used for the infection screening and real-time PCR, respectively. 167 

After a DNAse step using DNAse I (RNAse free) (New England Biolabs, Ipswich, MA, 168 

USA), RNA samples were cleaned on RNA clean and concentrator 5 columns (Zymo 169 

Research, Orange, CA, USA) following the manufacturer instructions. Quantification of total 170 

RNA and genomic DNA was performed with a NanoDrop
®
 ND-100 Spectrophotometer 171 

(Nanodrop Technology Inc., Wilmington, DE, USA) and the integrity was checked using 172 

1.5% agarose gel electrophoresis. For each sample, 250 ng of total RNA isolated was used to 173 

obtain cDNA by reverse transcription using the GoScript
TM

 Reverse Transcription System 174 
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(Promega, Fitchburg, WI, USA) following the manufacturer protocol and using Oligo(dT)15 175 

primers and recombinant RNasin
®
 Ribonuclease Inhibitor. 176 

2.4.  Infection screening 177 

The infection of E. marinus by parasites capable of inducing an increase in the serotonergic 178 

activity (Guler and Ford 2010) might interfere with the response of this species to SSRIs or 179 

create additional variation within controls. The E. marinus population used for this study has 180 

been comprehensively screened and found to contain a single trematode species capable of 181 

neurological modulation of its host (Yasmin Guler, unpublished data). Therefore, an infection 182 

screen using PCR was performed to enable the removal of amphipods infected by this 183 

trematode from the dataset used for the behavioural and transcriptomic analysis. PCR assays 184 

were conducted on genomic DNA using primers designed to amplify the Internal Transcribed 185 

Spacer (ITS) region of the ribosomal RNA gene for this trematode species (Yasmin Guler, 186 

unpublished data). To check the quality of DNA sample, amplification of the glyceraldehyde 187 

3-phosphate dehydrogenase (Gapdh) gene was used as a control (Table 1). PCR reactions 188 

were performed in a final volume of 25 μL containing 1X GoTaq
®
 Flexi Buffer, 2.3 mM of 189 

MgCl2, 0.8 mM of each dNTPs, 0.4 μM of each primer, 1 U of GoTaq
®

 DNA polymerase 190 

(Kit GoTaq
®
 Flexi DNA polymerase, Promega) and 30 ng of genomic DNA. The PCR 191 

conditions were: initial denaturation at 95 °C for 2 min, followed by 40 cycles of 95 °C for 45 192 

s, 59 °C for 45 s 72 °C for 2 min and 20 s and a final incubation at 72 °C for 5 min. The PCR 193 

products were then analysed using agarose gel electrophoresis to check the presence of the 194 

amplified trematode ribosomal sequence. 195 

2.5.  Primer design and real-time PCR 196 

The transcriptome of E. marinus has recently been sequenced (unpublished data). The 197 

generated expressed sequence tags were assembled to create a "transcriptome atlas" of 198 

contiguous sequences (or contigs) and these contigs were annotated by comparison to non-199 

redundant sequences in the UniProt and FlyBase database (BLASTX, E-value cut-off of 1e
-5

). 200 

The contigs chosen for primer design were selected using the following criteria: (i) selection 201 

of contigs that potentially represent genes involved in behaviour modulation, even if they 202 

were not well annotated (E-value > e
-5

), on the basis that such contigs might represent poorly 203 

conserved genes involved in neurological pathways; or (ii) selection of genes with a 204 

confident annotation (an E-value < e
-5

) potentially involved in serotonin or neurological 205 

pathways; (iii) genes that appeared to show exclusively high expression in the head, on the 206 
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basis that these are more likely to represent genes with neurological functions. A pooled 207 

sample of cDNA was used to test the suitability of each set of primers. All primers used in 208 

this study, including those used as reference genes Gapdh and Calreticulin (Table 1) were 209 

designed using Primer-3 software (Koressaar and Remm 2007; Untergrasser et al. 2012) and 210 

synthesised by Eurofins MWG Operon (Ebersberg, Germany). 211 

Quantitative real-time PCR (qPCR) analyses were performed using a real-time PCR cycler 212 

(Eco Illumina
®
, San Diego, CA, USA) on 12 samples per condition (or 3 pools of 4 head 213 

samples to test the primer pairs), using 7.5 μL of LabTAQ
TM

 Green (LabTech International 214 

Ltd, Uckfield, UK), 1 μL of cDNA, 5.7 μL of ultra-pure water, 0.2 μL each of Rhod1 forward 215 

and reverse primers and 0.4 μL each for all other primers (all primer volumes taken from a 10 216 

μM stock). The PCR reactions were performed with an initial incubation at 95 °C for 2 min, 217 

followed by 45 cycles of 95 °C for 5 s and 60 °C for 30 s with Rox normalisation. Following 218 

the final cycle, the reactions underwent a 15 s, 95 °C denaturing step followed by a 15 s, 55 219 

°C hybridisation step before PCR product melt curves were determined during a further 220 

temperature increase to 95 °C. Standard curve analysis was used to determine the efficiency 221 

of each primer pairs and melt curve analysis were performed for each gene to confirm the 222 

specificity of the PCR product in each reaction. Ultra-pure water was used in the place of 223 

template in the no template control reactions. Furthermore, minus RT reactions were 224 

performed to control for the potential presence of residual genomic DNA. The control group 225 

of animals (that were not exposed to antidepressants) were used as the reference sample. The 226 

relative expression of each gene was calculated using the ΔΔCt method (Livak and 227 

Schmittgen 2001) and normalised with both Gapdh and Calreticulin as reference genes. 228 

Glyceraldehyde 3-phosphate dehydrogenase (Gapdh) is a reference (housekeeping) gene 229 

often used in several species (Barber et al. 2005) and particularly in crustaceans (Underwood 230 

et al. 2010; Leelatanawit et al. 2012). Statistical analyses were conducted on the square-231 

rooted relative expression of each gene and results are expressed as the mean ± standard 232 

deviation (s.d.). The normality was tested using a Kolmogorov-Smirnov test and multiple 233 

comparisons and comparison of two mean values were performed following ANOVA using 234 

the Dunnett’s multiple comparison test using SPSS
®
 Statistics and at a significance level of p 235 

< 0.05.  236 

 237 

3. Results 238 
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The mortality was very low during all exposure experiment with only 2 dead amphipods for 239 

the sertraline exposure at 1 μg/L and 1 ng/L. No trematode-infected amphipods (as detected 240 

by visual inspection and retrospective PCR) were used in the experiments. 241 

3.1.  Behavioural experiment 242 

The average of each amphipods’ velocity during the 3 times 2 min dark/2 min light cycle for 243 

each condition after 8 d exposure are shown in Fig. 1 as an example of the dataset generated. 244 

Generally, when the light was switched on, the amphipods react and the velocity increases 245 

almost instantly for each condition and time of exposure with the velocity gradually abating 246 

after 30 s.  247 

Multiple comparison tests (Tukey’s Multiple comparison; data not shown) revealed 248 

significant differences (p < 0.001) between 30 s time bins occurred overwhelmingly between 249 

the light and dark periods and were more pronounced for the 1
st
 thirty seconds into the 2 min 250 

light cycles. This pattern was consistent for all concentrations, drugs and exposure periods. 251 

Interestingly, the 1
st
 30 s bin on the 1

st
 of the 3 dark-light periods was also significantly 252 

different (p < 0.001) from all other periods within the light apart from after 1 d for both drugs 253 

(Fig. 2A.). For both drugs and at all exposure times, there was a significant effect of the 254 

varying dark-light cycles over the 12 min on the amphipods velocity (p < 0.001; Table 2; Fig. 255 

2 and 3). 256 

For fluoxetine after 1 hr exposure, there was no significant effect of the different 257 

concentrations (p > 0.05; Fig. 2 and Table 2) on velocity (mm/s) but there was a significant 258 

interaction between dark-light cycles and concentration (p < 0.05). This interaction appears to 259 

have occurred due to a divergence in velocity between concentrations over the three dark-260 

light cycle which can be observed on the graph (Fig. 2A.). After 1 d exposure, a significant 261 

difference in the velocity was observed between concentrations (p < 0.001). Dunnett’s 2-way 262 

multiple comparison tests revealed that significant differences occurred between the controls 263 

and all concentrations (0.001-1 µg/L: p < 0.01) with the highest velocities generally observed 264 

in the concentration 0.1 µg/L (about 78% higher than the control) and the lowest increase at 265 

0.001 µg/L (about 43% higher than the control) (Fig. 2). Similarly, a significant interaction 266 

between concentrations and the dark-light cycles was observed (p < 0.005). After the 8 d 267 

exposure no significant difference was observed in the velocity of amphipods between 268 

treatments (p > 0.05) and the interaction tests failed to reach the significant cut-off (p = 269 

0.098).  270 
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For sertraline, after just 1 hr exposure, significant differences were observed in the velocity 271 

between concentrations (p < 0.05; Fig. 3 and Table 2). Velocities were elevated in all 272 

concentrations, apart from the lowest (0.001 µg/L), relative to the control. However, 273 

Dunnett’s multiple comparison tests revealed that significant differences occurred only 274 

between the controls and the 0.01 µg/L concentration (about 73% higher than control 275 

velocity; p = 0.002; Fig. 3). A significant difference was also observed after 1 d of exposure 276 

to sertraline with all (apart from 0.001 µg/L; velocity higher of about 69, 55 and 33% 277 

respectively for 0.01, 0.1 and 1 µg/L) exposed groups recording higher average velocities 278 

compared to the control (p < 0.001; Fig. 3). After 8 d exposure, no significant difference was 279 

observed in the velocity between exposed and control groups, with the associated p-value just 280 

failing to meet the significant criteria (p = 0.057; Fig. 3A.). For all sertraline exposure times, 281 

no interaction was observed between concentration and time (p > 0.05; Table 2). 282 

3.2.  The expression levels of neurologically-related genes in amphipods 283 

exposed to fluoxetine and sertraline 284 

The expression level of reference genes, Gapdh and Calreticulin, did not change for any 285 

concentrations of both fluoxetine and sertraline: for Gapdh: df = 8, F = 1.380 and p-value = 286 

0.239; for Calreticulin: df = 8, F = 1.648 and p-value = 0.148.  287 

RNA pooled from 12 individuals for each exposure group were used to test the suitability of 288 

each primers pair associated to a set of 10 potential neurological biomarker genes (7 289 

annotated with an E-value < e
-5

 and 3 unannotated). The serotonin receptor 1 (5HT1), the N-290 

acetylserotonin O-methyltransferase-like protein (Acser), the inebriated neurotransmitter 291 

(Ine1) genes and contig 11430 presented very low expression, making it hard to determine 292 

expression from genomic contamination or the amplification of small amounts of artefact 293 

(results not shown). Those primer sets were then subsequently abandoned. For the two 294 

remaining unannotated genes (contig 9063 & 113810) the Ct value (the cycle number at 295 

which the fluorescent signal (ΔRn) crossed an arbitrary threshold set within the linear phase 296 

of amplification) for both genes, was less than 22 cycles and no contamination by dimers or 297 

hairpin hybridisation was evident. However, despite this high expression, no variation in their 298 

expression with pooled cDNA was observed between each exposure (results not shown). 299 

Four sets of primers, [Neurocan core protein (Neuc), Rhodopsin (Rhod1), Arrestin (Arr) and 300 

tryptophan hydroxylase (Ph)] did present evidence of both high and altered expression using 301 
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the pooled cDNA and were therefore used to quantify the variation of gene expression among 302 

each condition (drug and concentration after 8 d exposure).  303 

The mRNA expression levels of these four genes in the head of E. marinus exposed for 8 d to 304 

0, 0.001, 0.01, 0.1 and 1 μg/L of fluoxetine are illustrated in Fig. 4A. Significant differences 305 

were observed between expression of Neurocan core protein (F = 6.632, df = 4, p = 0.007), 306 

Rhodopsin (F = 4.367 df = 4, p = 0.027), and tryptophan hydroxylase (F = 3.917, df = 4, p = 307 

0.036) but not for Arrestin (F = 1.313, df = 4, p = 0.330). Where significant differences were 308 

observed, these were predominantly found to be down-regulated in treated samples when 309 

compared to the control group for the lower fluoxetine concentrations (Dunnett’s Multiple 310 

Comparison p < 0.05; Fig. 4A). 311 

The mRNA expression levels of the four genes for 8 d exposure to sertraline are illustrated in 312 

Fig. 4B. Significant differences in expression were observed for Rhodopsin (F = 7.868, df = 313 

4, p = 0.004) and Arrestin (F = 3.527, df = 4, p = 0.048) but not for Neurocan core protein (F 314 

= 2.860, df = 4, p = 0.081) and tryptophan hydroxylase (F = 2.137, df = 4, p = 0.151). 315 

Multiple comparison tests found no significant differences from the control, although it is 316 

worth noting that the expression of Neurocan core protein just failed to meet the significance 317 

criteria for the lowest concentration (0.001 μg/L, p = 0.064) as well as Rhodopsin for 0.1 318 

μg/L (p = 0.075). 319 

 320 

4. Discussion  321 

4.1. Effect of light on amphipod behaviour 322 

Amphipods naturally avoid well lighted areas and favour shadowed or dark regions in the 323 

intertidal zone where there is lower risk of predation (Cezilly et al. 2000). In this study, a 324 

significant increase in the velocity was observed in the first 30 s of light periods with a higher 325 

increase for the first of three light periods, at 1 hr and 8 d but not after 1 d of the beginning of 326 

the experiment. Sudden stimulation of the eyes could be interpreted by the amphipod as a 327 

reduction in cover and results in an escape-related behaviour in order to avoid predation. The 328 

decrease in the response to subsequent light periods indicates that the optic nerves may have 329 

been overstimulated and that a time of recovery from the first stimulation is needed. One day 330 

after the start of the experiment, the initial response to the light was reduced across all 331 

exposures indicating that more time may be necessary to recover. 332 
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4.2.  Effect of fluoxetine and sertraline on amphipod behaviour 333 

The first purpose of this investigation was to assess the effect of two SSRIs on the swimming 334 

behaviour of the amphipod E. marinus. In this study, amphipods were exposed to 335 

concentrations from 0.001 to 1 μg/L of fluoxetine and sertraline, these concentrations fall 336 

well within those currently being found in the aquatic environment (0.929 μg/L and 0.087 337 

μg/L respectively) (Brooks et al. 2003; Metcalfe et al. 2010; Styrishave et al. 2011; Silva et 338 

al. 2012). Interestingly, a significant interaction between the dark-light cycling and 339 

concentration was observed for fluoxetine at short-term (1 hr and 1 d). This interaction was 340 

due to a divergence in the response to light between the animals exposed to various 341 

concentrations of fluoxetine and demonstrates that these antidepressants have an effect on 342 

amphipod behaviour. There was a significant increase in the velocity over the 12 min time 343 

period at 1 d exposure to 0.1 μg/L of fluoxetine (of about 78%) compared to the control, 344 

which is consistent with the concentration used in the experiment to produce maximum 345 

phototaxis behaviour of this species exposed to fluoxetine (Guler and Ford 2010). Guler and 346 

Ford (2010) highlighted the non-monotonic concentration response curve, noting a peak of 347 

phototaxis activity in the animals exposed at 0.1 μg/L of fluoxetine. The lack of significant or 348 

reduced effects in higher concentrations of fluoxetine could be due to the inhibition of a finite 349 

amount of endogenous serotonin or desensitisation, as also suggested by Guler and Ford 350 

(2010). Amphipods exposed to 0.01 μg/L of sertraline showed a significant higher velocity 351 

than the control after 1 hr exposure (about 69%), as well as from 0.01 to 1 μg/L after 1 d. 352 

Sertraline’s mode of action is similar to fluoxetine, both being SSRIs. The effect of sertraline 353 

was most prominent for the 0.01 μg/L concentration compared to the higher concentrations 354 

for which the velocity was lower. This suggests that as well as for fluoxetine, higher 355 

concentrations of sertraline might tend to more quickly reach a maximum level of serotonin 356 

re-uptake inhibition or lead to a desensitisation. The larvae of the fish, P. promelas has a 357 

suppression of predator avoidance after less than a week of exposure to 0.025 μg/L of 358 

fluoxetine (Painter et al. 2009), although no alteration of this behaviour was found at higher 359 

concentrations. In adults, a decrease of the predator avoidance behaviour has also been 360 

demonstrated when exposed at a concentration of 3 μg/L of sertraline for 28 d (Valenti et al. 361 

2012). However, contrary to fluoxetine, the response to higher concentrations (10 and 30 362 

μg/L) of sertraline was the same as for 3 μg/L in P. promelas. 363 

The increased light-induced velocity of amphipods exposed to SSRIs is consistent with an 364 

increase of the serotonin amount. This study did not test the preference of the amphipods to 365 
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lit areas [although this was observed by Guler and Ford (2010)], but rather the velocity of 366 

shrimp within light or dark environments. The most consistent results from this experiment 367 

indicated that amphipods are significantly more active both in light and dark phases of the 368 

experiment (with some interactions between light and concentration observed) when exposed 369 

to SSRIs as compared to untreated amphipods. Furthermore the recovery time (time to return 370 

to the basal velocity level) to light stimulation is altered between exposures and control. It is 371 

possible that the increased activity could also be due to the influence of serotonin on other 372 

hormones [e.g. Crustacean Hyperglyceamic Hormone, CHH; (Fingerman 1997)] and/or 373 

locomotor activity (McPhee and Wilkens 1989). However, changes in the transcription of 374 

genes relating to phototransduction pathways measured during study add some weight for 375 

linking the behavioural and gene responses. It will be beneficial in future studies to lengthen 376 

the periods of light and dark to differentiate the behaviours further. 377 

Studies investigating the effect of SSRIs on aquatic organisms have been mainly performed 378 

using concentrations higher than those found in the environment and used in this study. 379 

Impacts of fluoxetine on the reproduction of C. dubia were observed at 56 μg/L with a 380 

decrease of fecundity (Brooks et al. 2003), and around 10 μg/L in D. magna (Péry et al. 381 

2008). The acute toxicity of sertraline on animals has been demonstrated with a LC50 of 380 382 

μg/L in fish following 96 hr of exposure (Minagh et al. 2009) and change in the behaviour of 383 

fish was found from 3 μg/L (Valenti et al. 2012). Relatively few studies have been carried out 384 

using environmentally relevant concentration of SSRIs (Painter et al. 2009; Guler and Ford 385 

2010; Fong and Hoy 2012). However, the current study has found significant impacts as low 386 

as 0.001 μg/L that fall well within concentrations considered environmental relevant in the 387 

aquatic environment close to wastewater effluent and inhabited by this species (about 0.0026 388 

μg/L in US estuaries, Paint et al. 2006). Furthermore, the degree of degradability of these 389 

antidepressants in water is generally low and their half-lives is from 2 days to indefinite 390 

(Johnson et al. 2005; Kwon and Armbrust 2006). The benthos is a reservoir for these 391 

compounds as they tend to be absorbed by sediments or sludge (Kwon and Armbrust 2006). 392 

The amount of SSRIs in this compartment should also be investigated in order to better 393 

evaluate the effects of antidepressants on amphipods. In this study, fluctuations in fluoxetine 394 

and sertraline concentrations might have occurred due to the static renewal of water every 2 395 

days and the potential binding to the exposure chamber. Furthermore, insignificant results 396 

from the lower concentration range need to be carefully interpreted in light of the nominal 397 

concentrations used and the potential for chemical breakdown. 398 
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The presence of antidepressants in the environment can be chronic due to a constant release 399 

from the sewage water (Santos et al. 2010), thus a long-term analysis is essential to truly 400 

understand the effect of prolonged exposure times on aquatic organisms. Our results 401 

indicated that the most enhanced effects of fluoxetine and sertraline were observed following 402 

short-term exposure, after 1 hr (sertraline only) and 1 d of exposure. Although, contrary to 403 

this, Guler and Ford (2010) found a significant and continued preference of lit arenas still 404 

after 3 weeks exposure to fluoxetine at 0.1 μg/L compared to controls. As suggested by our 405 

higher concentrations of SSRIs in this study, a longer term exposure might lead to a 406 

desensitisation effect or a lack of serotonin availability and explain why no significant effect 407 

of both drugs was found after 8 d exposure. In mammals, it has been shown that the 408 

responsiveness to fluoxetine decreases following chronic exposure due to a critical decrease 409 

in the tryptophan levels, the precursor of serotonin (Delgado et al. 1999). Therefore, after 410 

several days of exposure to SSRIs, the haemolymph tryptophan content might be nearly 411 

depleted, reducing the drug effect on amphipods. Another hypothesis could be a negative 412 

feedback loop in the serotonin pathways; amphipods might be compensating for the change 413 

by producing less serotonin to flood the synapse or by increasing the expression of serotonin 414 

re-uptake transporter (Pineyro et al. 1994). It would then be interesting to compare the impact 415 

of these drugs on the serotonin pathway at short-term and long-term in further research. 416 

4.3.  Effect of fluoxetine and sertraline on amphipod gene transcription  417 

The second aim of this study was to elucidate the molecular mechanism by which 418 

behavioural changes may be taking place. The absence of variations in Calreticulin and 419 

Gapdh expression supports their utilisation as reference genes.  420 

Rhodopsin (Rhod1) is involved in behaviour regulation and is a light receptor and signal for 421 

phototransduction in vertebrates and invertebrates (Orem and Dolph 2002). In invertebrates, 422 

phototransduction cascade is mediated by rhodopsin, a light receptor which is transformed 423 

into metarhodopsin by photo-isomerisation (Orem and Dolph 2002). The metarhodopsin 424 

activates a Gαq-type of G-protein, hydrolysing guanosine triphosphate (GTP) to guanosine 425 

diphosphate (GDP), which then activates a phospholipase C (PLC). Finally, the PLC opens a 426 

transient receptor potential (TRP) channels which induce a depolarisation of the cells. Rhod1 427 

was significantly down-regulated in amphipods exposed to low concentrations of fluoxetine 428 

(0.001 and 0.01 μg/L) and slightly up-regulated for those exposed to 0.001 μg/L of sertraline. 429 

One explanation for the opposite gene expression patterns observed in E. marinus when 430 
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exposed to these two antidepressants may be the differences in their mode of action. 431 

Therefore, one might speculate that the mis-regulation of Rhod1 could then modulate the 432 

transduction of light stimulation and alter the behaviour of amphipods to light. However, 433 

further studies will be necessary to better understand the role of rhodopsin in modulating 434 

amphipod behaviour. The protein encoded by the arrestin (Arr) gene is also involved in the 435 

phototransduction. In fact, this gene contributes to the arrest of the phototransduction cascade 436 

(Kashiyama et al. 2010) by binding the active metarhodopsin and inhibits it by uncoupling 437 

rhodopsin from the Gα-subunit protein (Orem and Dolph 2002). An example of their role in 438 

crustacean is that arrestin and rhodopsin promote light-induced hatching in Triops granarius 439 

(Kashiyama et al. 2010). In our study, Arr is down-regulated only in animals exposed to 440 

0.001 and 0.01 μg/L of fluoxetine, which could be potentially linked to the down-regulation 441 

of Rhod1 and components of the phototransduction pathway if followed by a protein down-442 

regulation. 443 

The neurocan core protein (Neuc) is a protein involved in cell adhesion and migration and is a 444 

factor in bipolar disorder, manic-depressive disorder and schizophrenia (Cichon et al. 2011; 445 

Mühleisen et al. 2012). In our study, Neuc mRNA expression significantly decreases for the 446 

two lower concentrations of fluoxetine. Assuming a similar function of Neuc in amphipods 447 

and mammals (Livak and Schmittgen 2001), a decrease in the expression of this gene if 448 

followed by a decrease in amount of its protein might lead to behavioural changes. It might 449 

then induce an increase of energy (Livak and Schmittgen 2001) which might tend to reduce 450 

the predator avoidance behaviour. The role of this gene should be investigated in further 451 

studies to define its function in amphipods. The enzyme tryptophan hydroxylase (Ph) 452 

catalyses serotonin biosynthesis in the serotonergic nerves (Hasegawa and Nakamura 2010). 453 

However, no significant variation in the expression of this gene has been found between each 454 

condition, which suggests that this gene is not involved in the serotonin regulation inducing 455 

the behavioural change observed when exposed to antidepressants.  456 

The expression variations of these four genes were relatively low in E. marinus and it is 457 

unclear what impacts their down-regulation may have on amphipod behaviour. There is 458 

paucity of research regarding the molecular processes that underlie serotonin pathways and 459 

behavioural regulation in aquatic invertebrates. Further studies are essential in order to better 460 

understand the role of these genes in crustaceans and their relationship to the behaviour 461 

modification observed following antidepressant exposure. However, this study clearly 462 

demonstrates that exposure to SSRIs can be associated with alteration in the expression of 463 
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genes with plausible links to amphipod behaviour and serotonergic activity. Recently, it has 464 

been demonstrated in the crustacean Gammarus pulex that the histaminergic system is 465 

involved in the reaction to light in association with the serotonergic system (Perrot-Minnot et 466 

al. 2013). In the same study, looking at the influence of several 5-HT receptor antagonists and 467 

agonists, it has been suggested that the serotonin receptor 5-HTR2 subtype might be involved 468 

in the behaviour regulation of G. pulex. Furthermore, in D. magna, a transcriptomic analyses 469 

using a custom microarray showed that more than 1200 genes have a mRNA expression 470 

change when exposed to fluoxetine (Campos et al. 2013). Serotonin metabolism, neuronal 471 

development processes, carbohydrate and lipid metabolism functions were found to be 472 

differentially expressed when annotated by comparison to the functionally annotated 473 

Drosophila genome. 474 

 475 

4.4. Summary 476 

This study has provided evidence that a crustacean’s behaviour and gene expression could be 477 

abnormally altered in waters receiving antidepressants at concentrations as low as 0.001 478 

μg/L. The use of behavioural analysis has been demonstrated as good biomarker of the 479 

exposure of amphipods to antidepressants. The transcriptome of E. marinus is a rich resource 480 

for neurological genes that are potentially involved in behavioural regulation and serotonin 481 

related pathways. Therefore, future studies will be able to test an expanding number of 482 

amphipod genes for transcriptional change following exposure to antidepressants. This study 483 

has also provided further evidence for the non-monotonic concentration responses of some 484 

antidepressants, which should be taken into account when designing and evaluating toxicity 485 

tests. Whether other biological systems, for example: reproduction, moulting, metabolism and 486 

the immune system are impacted following low SSRIs exposure remains an important 487 

unanswered question. The effect of other SSRIs and their metabolites (Brooks et al. 2003; 488 

Stanley et al. 2007; Paterson and Metcalfe 2008; Metcalfe et al. 2010) on amphipods should 489 

also be evaluated along with other types of antidepressant such as the serotonin-490 

norepinephrine re-uptake inhibitors (SNRIs) and the serotonin antagonist and re-uptake 491 

inhibitors (SARIs). The use of other types of antidepressants increases every year, with an 492 

increase of about 60 % for the SNRI duloxetine the last two years (HSCIC and Prescribing 493 

and Primary Care Services 2013). Considering that the mode of action for these other types of 494 

antidepressants is different from the SSRIs, it is important to also determine their potential 495 
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impact on aquatic organisms. How multiple antidepressants, with multiple modes of action, 496 

will act in mixtures is another challenge faced by ecotoxicologists. For example, it has been 497 

demonstrated that mixtures of antidepressants have additive effects in aquatic organisms 498 

(Christensen et al. 2007; Styrishave et al. 2011) and leads to a decrease in the predation 499 

avoidance behaviour in the larvae of the fish P. promelas (Styrishave et al. 2011). The 500 

organismal and ecological implications of these findings are difficult to deduce but coupled 501 

with previous studies suggest that SSRIs present in the aquatic environment could 502 

conceivably lead to population level effects through impacts on predation, feeding and 503 

reproductive associated behaviour. 504 

505 
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Table and Figures captions 717 

Table 1. Primer sequences used in this study and target genes associate. The primers couple 718 

for serotonin receptor 1 have been design on alignment of several invertebrates’ sequences of 719 

this gene and in very conserved area. Italic: the reference genes used to normalised the gene 720 

expression; 
† 

Four set of primers found relevant for quantification; * Target gene unknown, 721 

no annotation: E-value > e
-5

. 722 

Primer 
Name 

Nucleotide sequences                    (from 5’ 
to 3’) 

Target Gene 
Uniprot  or 
GenBank ID 

Ref. Species E-value 

5HT1-
F 

CAA CGC AGA GTA CGG GGT TGG T 

Serotonin receptor 1    
5HT1-

R 
GCA AAA CGG CGA AAT CGA ACG GG 

Acser-
F 

AAA CCC ACA AAC GAC GAC CA 
N-acetylserotonin O-

methyltransferase-like protein 
O95671 Homo sapiens 7E-25 

Acser-
R 

AAG GTT ACT CTC TGC CAC GC 

Arr-F CTC CTT CGA CTC CAG GCT TG 

Arrestin
†
 P32122 Locusta migratoria 5.00E-50 

Arr-R GGC TAA CCT GGG CAT CAA CA 

Calret-
F 

AGA TCG GAG GCA TTG TTT TG 

Calreticuline Q7Z1E6 Bombyx mori 1.00E-155 
Calret-

R 
AAC ACG TGG GCC GAG TAT AG 

Gapdh-
F 

ATA GTG TCC AAC GCC TCC TG 

GAPDH P56649 Panulirus versicolor 1E-164 
Gapdh-

R 
CCA GTG GAG GAT GGA ATG AT 

Ine1-F CGT GGA GGA GCC GTT GCC TG 

Inebriated neurotransmitter NM057664.5 Culex quinquefasciatus 4.00E-05 

Ine1-R CCT GTG CGG CAT CCC TCT GC 

Neuc-F CCC TAC CCT GTT TGC TCC AG 

Neurocan core protein
†
 P55066 Mus musculus 7.00E-19 

Neuc-
R 

CCA TTT TGG TAG TTC GCG GC 

Ph-F GGT CAA GAC CTG GAG CGC GG 

Tryptophan hydroxylase
†
 AY099427.1 Aedes aegypti 6.00E-142 

Ph-R GGT GCT GTG GAA CAC GCG GA 

Rhod1-
F 

CCC GCC AAC ATG CTG CCT GA 

Rhodopsin
†
 DQ85259 Neomysis americana 4.00E-74 

Rhod1-
R 

CGG GTG ACC GCA GGC TCT TG 

9063-F TCA TCGACG AAC TTG GAG CC 

   * 

9063-R TCA TTG GCC TCT AGA AGC GC 

11381-
F 

TTC CGA ACT AAC GCC TGC TC 

   * 
11381-

R 
CCA ACA GTG CAG CAA CAT CG 

11430-
F 

GTG AGG AGG AGG TGT GGG TA 

   * 
11430-

R 
GGT ACA GGC GAG ACA ACA GG 

 723 

 724 

 725 
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Table 2. Results of statistical analyses of velocity tracking during the 12 min of 2 min dark/2 726 

min light periods in Echinogammarus marinus exposed to each concentrations of fluoxetine 727 

and sertraline for each time of exposure. 728 

Compoun

d 

Exposur

e Period 
Concentration 

Time (Light-Dark 

Cycles) 

Interaction: time* 

concentration 

 
F 

d

f p F df p F df p 

Fluoxetine 

1 Hour 

0.58

5 4 0.675 

27.33

5 

12.3

5 

<0.00

1 

1.48

2 

49.41

2 

0.01

8 

1 Day 

7.19

9 4 

<0.00

1 

14.14

8 23 

<0.00

1 

1.69

4 

53.01

7 

0.00

2 

8 Days 

1.08

7 4 0.368 

13.78

7 23 

<0.00

1 

1.31

1 

39.43

7 

0.09

8 

Sertraline 

1 Hour 

3.71

9 4 0.008 

14.87

8 23 

<0.00

1 

1.06

1 

53.72

5 

0.35

8 

1 Day 

7.96

6 4 

<0.00

1 

14.34

1 23 

<0.00

1 

1.30

7 

43.65

6 

0.40

7 

8 Days 

2.37

3 4 

<0.05

7 

15.45

1 23 

<0.00

1 

1.32

1 

46.33

7 

0.07

6 

F: ratio of the between and within group variance estimates; df: degrees of freedom; p: p-729 

value, in bold when significant. 730 

731 
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 732 

Fig. 1. Mean velocity (mm/s) of 15 Echinogammarus marinus per treatment exposed to 733 

fluoxetine and sertraline for 8 d recorded with DanioVision. 6-wells plates were used to track 734 

the velocity of 6 amphipods at a time every 0.1 s over a 12 min period of alternate 2 min 735 

dark/2 min light periods (A). Lines indicate mean values of replicates specimens. Black: 736 

control, gradation of blue: fluoxetine (FLU) concentrations (B), gradation of orange: 737 

sertraline (SER) concentrations (C). 738 

 739 

 740 

Fig. 2. Estimated marginal means (A) and heat map (B) of the velocity (mm/s) average every 741 

10 s during the 12 min of 2 min dark/2 min light periods for each fluoxetine concentrations 742 

and time exposure. Heat map: green: the 5th percentile, black: the 50th percentile and red: the 743 

95th percentile. Hr: hour, d: day(s). Asterisks indicate significant differences to the control (p 744 

< 0.05). 745 
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 746 

 747 

Fig. 3. Estimated marginal means (A) and heat map (B) of the velocity (mm/s) average every 748 

10 s during the 12 min of 2 min dark/2 min light periods for each sertraline concentrations 749 

and time exposure. Heat map: green: the 5th percentile, black: the 50th percentile and red: the 750 

95th percentile. Hr: hour, d: day(s). Asterisks indicate significant differences to the control (p 751 

< 0.05). 752 
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 753 

 754 

Fig. 4. Relative expression of Neurocan core protein (Neuc), Rhodopsin (Rhod1), Arrestin 755 

(Arr) and tryptophan hydroxylase (Ph) mRNA in the head of Echinogammarus marinus 756 

exposed to four fluoxetine (A) and sertraline (B) concentrations for 8 d. The expression was 757 

normalised according to the expression of Gapdh and Calreticulin. n = 3 pools of 4 758 

amphipods. Data are expressed as the mean ± s.d. Asterisks indicate significant differences to 759 

the control (p < 0.05). 760 
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