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Abstract

Forecast is pervasive in all areas of applications in business and daily
life and, hence, evaluating the accuracy of a forecast is important for
both the generators and consumers of forecasts. There are two aspects
in forecast evaluation: (1) measuring the accuracy of past forecasts us-
ing some summary statistics and (2) testing the optimality properties of
the forecasts through some diagnostic tests. On measuring the accuracy
of a past forecast, we illustrate that the summary statistics used should
match the loss function that was used to generate the forecasts. If there
is strong evidence that an asymmetric loss function has been used in the
generation of a forecast, then a summary statistic that corresponds to
that asymmetric loss function should be used in assessing the accuracy of
the forecast instead of the popular RMSE or MAE. On testing the opti-
mality of the forecasts, we demonstrate how the quantile regressions and
expectile regressions set in the prediction-realization framework of Mincer
and Zarnowitz (1969) can be used to recover the unknown parameter that
controls the potentially asymmetric loss function used in generating the
past forecasts. Finally, we apply the prediction-realization framework to
the Federal Reserve�s economic growth forecast and forecast sharing in a
PC manufacturing supply chain. We �nd that the Federal Reserves values
over prediction approximately 1.5 times more costly than under predic-
tion. We also �nd that the PC manufacturer weighs positive forecast
errors (under forecasts) about four times as costly as negative forecast
errors (over forecasts).

1 Introduction
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Forecast is pervasive in all areas of business and daily life. Weather forecasts
are important for planning our day-to-day activities. Farmers rely on them for
the planting and harvesting of crops while airlines need them to make decisions
that maintain safety in the skies. The insurance industry relies on them form
informed pricing and capital decisions. Corporations use forecasting to predict
their future �nancial needs, production planning, human resource planning, etc.
Forecasting is used by investors to value companies and their securities. The
startup of a new business requires forecasting of the demand for the product, ex-
pected shares in the market, the capacity of competitor, the amount and sources
for funds, etc. In supply chain management, businesses have to synchronize the
ordering of supplies to meet the forecasted demand of its customers. In govern-
ment policy decisions, economic forecasts are very important for determining
the appropriate monetary policy/�scal policy. In the healthcare industry, fore-
casting can be used to target disease management or device personalized health
care based on predicted risk.
As a result, evaluating the accuracy of a forecast is important for both the

generators and consumers of forecasts. However, there are abundant evidence
that the forecasts being generated are inconsistency with the realizations of the
forecasted values. Silver (2012) discusses the weather industry�s bias toward
forecasting more precipitation than will actually occur, what meteorologists call
"wet bias". Using 121 responses to a 26-question mail questionnaire sent to the
highest ranking �nancial o¢ cer in 500 �rms on the Fortune 500 listing, Pruitt
and Gitman (1987) found that capital budgeting forecasts are optimistically
biased by people with work experience. Ali, et al. (1991) �nd that analysts
set overly optimistic forecasts of the next period�s annual earnings per shares.
Lee et al. (1997) and Cohen et al. (2003) provide ample evidence of overopti-
mistic forecasts across industries ranging from electronics and semiconductors
to medical equipment and commercial aircraft in the supply chains In terms
of economic variables forecasts, Capistrán (2008) provides evidence that the
Federal Reserve�s in�ation forecasts systematically under-predicted before Paul
Volcker appointment as Chairman and systematically over-predicted afterwards
until the second quarter of 1998.
Do these forecast biases signify suboptimal forecast performance? In the

traditional sense, the over-prediction or under-prediction bias are indications
of suboptimal forecasts. However, the tradional tests for forecast optimality
rely, typically, on the assumption of symmetric mean-square error loss function.
Under this square error loss, over prediction and under prediction are weighted
equally, and optimal forecasts imply that the observed forecast errors will have
a zero bias and are uncorrelated with variables in the forecasters�information
set. However, strong arguments can be provided for the rationale that forecast-
ers may not have adopted a symmetric errors loss function. For example, in
�rms�forecasting of sales, over prediction will result in over inventory and in-
creased insurance costs, and tied up capital while under prediction leads to loss
of goodwill, reputation, and current and future sales. Firms may decide that
the cost of loss of goodwill is much higher than increased insurance costs and,
hence, weigh the under prediction error more than the over prediction error.
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For money managers of banks, over predicting the value-at-risk ties up more
capital than necessary while under predicting leads to regulatory penalties and
the need for increased capital provisions. They may conclude that the cost of
increased capital provisions is higher than the cost of tied up capital and de-
cide to weigh the under prediction error more than the error of over prediction.
It might be particularly costly for the Federal Reserves to over predict GDP
growth when growth is already slow, signaling a false recovery, which could lead
to an overly tight monetary policy at exactly the wrong time. The cost of over
forecast is not always the same as that of under forecast. The dissatisfaction
that people have when the weatherman forecasts a sunny day but it turns out
to be a rainy day and, hence, ruin a picnic party, is way higher than when it is
forecasted to be rainy but turns out to be sunny and, hence, people enjoy an
unexpected nice day out. This can be the explanation for the wet bias and illus-
trate the asymmetric loss function used by the weatherman. Keane and Runkle
(1990, p. 719) argue that: "If forecasters have di¤erential costs of over- and
underprediction, it could be rational for them to produce biased forecasts. If we
were to �nd that forecasts are biased, it could still be claimed that forecasters
were rational if it could be shown that they had such di¤erential costs." Varian
(1974), Waud (1976), Zellner (1986), Christo¤ersen and Diebold (1997), and
Patton and Timmermann (2007) all have aruged that the presence of forecast
bias is not necessary an indication of suboptimal forecast.
Elliott and Timmermann (2008) summarize that forecast evaluation usually

comprises of two separate, but related, tasks: (1) measuring the accuracy of
past forecasts using some summary statistics and (2) testing the optimality
properties of the forecasts through some diagnostic tests. On the �rst task
of assessing the accuracy of a forecast, the most popular summary measures
have been the sample mean-square error (MSE), the sample root-mean-square
error (RMSE) and the sample mean-absolute error (MAE). However, the
MSE and RMSE metrics are appropriate only if the loss function used in
the forecaster�s decision making is the symmetric mean-square error while the
MAE is appropriate if the loss function is the symmetric mean-absolute error
as will be elaborated in details in Section 2. Numerous articles have argued
for the likelihood of and addressed the issues related to an asymmetric loss
functions being used by forecasters (see e.g., Granger, 1969 & 1999; Varian,
1974; Granger and Newbold, 1986; Zellner, 1986; Ito, 1990; West, Edison and
Cho, 1993; Weiss, 1996; Christo¤ersen and Diebold, 1997; Batchelor and Peel,
1998; Granger and Pesaran, 2000; Artis and Marcellino, 2001; Pesaran and
Skouras, 2002; Carpistran, 2006; Patton and Timmermann, 2007; and Elliott
and Timmermann, 2008). We demonstrate in this article that if there is strong
evidence that an asymmetric loss function has been used in the generation of
a forecast, then a summary statistic that corresponds to that asymmetric loss
function, in particular the sample root-mean-weighted-square error (RMWSE)
or the sample mean-weighted-absolute error (MWAE), both of which will be
de�ned in Section 2, should be used in assessing the accuracy of the forecast
instead of the popular RMSE or MAE.
The second task of testing the optimality properties of a forecast relies on the
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knowledge of the loss function being used and the underlying data generating
process (DGP) that generates the future values of the predicted variable, both
of which are, unfortunately, unknown in typical situations. There are a few
families of popular loss function speci�cations used in the literature. Elliott,
Komunjer and Timmermann (2005) propose a �exible family of loss functions
which subsumes the asymmetric lin-lin piecewise linear loss function, in which
the MAE loss is a special case, and the asymmetric quad-quad loss function,
which nests theMSE loss. It can be readily shown that the optimal forecasts for
the lin-lin loss function are the conditional quantiles while those for the quad-
quad loss functions are the conditional expectiles. Varian (1974), Zellner (1986),
and Christo¤ersen and Diebold (1997) use the linex loss while Christo¤ersen
and Diebold (2006) adopt the sign loss function. An important problem in
testing the optimality properties of a forecast is the issue of determining the
unknown loss function based on a sequence of observed forecasts. Elliott and
Timmermann (2008) suggest that one can estimate the unknown parameter that
controls the degree of asymmetry of the lin-lin and quad-quad loss functions
through the �rst order condition of the risk adopted by the forecasters. We
demonstrate how this can be accomplished using the quantile regressions and
expectile regressions set naturally in the prediction-realization framework of
Mincer and Zarnowitz (1969). With the estimated asymmetric parameter that
controls the asymmetry of the loss functions, one can then choose between the
RMSE and RMWSE, or the MAE and MWAE as the appropriate metric in
evaluating forecast accuracy.
The rest of the paper is organized as follows. In Section 2, we provide argu-

ments and evidence that the metric used in measuring the accuracy of a forecast
should be chosen according to the loss function being used when the forecast
was performed. We illustrate how the unknown parameter that controls the de-
gree of asymmetry in a loss function used by a forecaster can be recovered using
the Mincer-Zarnowitz prediction-realization framework in Section 3. Section 4
illustrates applications of the Mincer-Zarnowitz prediction-realization approach
to assess the Federal Reserve�s Greenbook forecast and sales forecasts of an elec-
tronic component manufacturer to try to recover the parameter of the possibly
asymmetric loss function used in their forecast decisions.

2 Matching the AccuracyMeasurements for Fore-
casts with the Loss Functions

We �rst introduce some basic notations before illustrating why the summary
measures used for forecast accuracy should be determined by the loss functions
used by the forecasters. Let Y be the random variable to be forecasted, Z =
fZtgTt=1 = fYt; XtgTt=1 be the vector of relevant variables (data) used in the
h-period ahead forecast of fYtgT+ht=T+1, Ŷ = f (Z; �) be the point forecast, in
which � is the unknown vector of parameters in the underlying forecast model,
and L (f; Y; Z) be the loss function that maps the forecast, outcome and data
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into the real line. The forecast decision is to choose f (Z; �) that minimizes the
risk

R (�; f) = EY;Z [L (f (Z; �) ; Y; Z)]

=

Z
z

Z
y

L (f (z; �) ; y; z) pY (yjz; �) pZ (zj�) dydz

=

Z
z

EY [L (f (Z; �) ; Y; Z) jZ; �] dz

where pY (yjz; �) and pZ (zj�) are the conditional probability density functions.
The classical forecast minimizes

EY [L (f (Z; �) ; Y; Z) jZ; �] =
Z
y

L (f (z; �) ; y; z) pY (yjz; �) dy (1)

given Z and �. We de�ne the forecast error as e =
�
Y � Ŷ

�
= [Y � f (z; �)].

A few of the popular loss functions are

1. Square loss: L (e) = e2

2. Absolute loss: L (e) = jej

3. Lin-lin loss: L (e) = 2 [� + (1� 2�) I (e < 0)] jej for 0 < � < 1 of which
the absolute loss is a special case with � = 0:5

4. Quad-quad loss: L (e) = 2 [! + (1� 2!) I (e < 0)]
�
e2
�
for 0 < ! < 1 of

which the squared loss is a special case with ! = 0:5

Elliott and Timmermann (2008) demonstrate that a forecast that is con-
sidered as good using one measure may not be good according to a di¤er-
ent measure. The most popular forecasts accuracy measures are the sample

MSE =
�Ki=1e

2
i

K and MAE = �Ki=1jeij
K , which are the sample counterparts of the

expected square loss and the expected absolute loss, respectively. Hence, it is

natural to use the sampleMSE, or root-mean-square error, RMSE =
q

�Ki=1e
2
i

K ,
as a measure of forecast accuracy when the forecasts are generated using the
symmetric square loss function and use the sample mean-absolute error, MAE,
for the symmetric absolute loss function. However, one should use the sample
mean-weighted-absolute error,

MWAE =
�Ki=12 [(w) + (1� 2w) I (ei < 0)] jeij

K

as the metric for forecast accuracy for asymmetric lin-lin loss function, and use
the sample mean-weighted-square error,

MWSE =
�Ki=12 [(w) + (1� 2w) I (ei < 0)]

�
e2i
�

K
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or root mean-weighted-square error,

RMWSE =

r
�Ki=12 [(w) + (1� 2w) I (ei < 0)] (e2i )

K

as the metric for the quad-quad loss function since these metrics are the corre-
sponding sample counterparts of the respective expected loss functions.

2.1 Simulated Examples

We perform a few simulations to illustrate that the summary measures used for
forecasts accuracy should match the loss functions used in generating the fore-
casts. Realizations of the forecasted variable Y are generated by the following
data generating processes. (See Koenker and Xiao, 2006.):

DGP1 Stationary AR(1)

Qyt (� jyt�1) = �0 (�) + �1yt�1
=
�
2 + 3��1 (�)

�
+ 0:6yt�1

where Qyt (� jyt�1) is the conditional quantile function of Y given yt�1. The
realizations are generated using

yt =
�
2 + 3��1 (ut)

�
+ 0:6yt�1 where ut � i.i.d. U [0; 1]

with ut being generated from an independently and identically distributed uni-
form distribution, U [0; 1].

DGP2 Stationary AR(1)

Qyt (� jyt�1) = �0 (�) + �1yt�1
=
�
2 + 3��1 (�)

�
+ 0:95yt�1

yt =
�
2 + 3��1 (ut)

�
+ 0:95yt�1 where ut � iid U [0; 1]

DGP3 Near Unit Root

Qyt (� jyt�1) = �0 (�) + �1 (�) yt�1

=
�
2 + 3��1 (�)

�
+min

�
3

4
+ �; 1

�
yt�1

yt =
�
2 + 3��1 (ut)

�
+min

�
3

4
+ ut; 1

�
yt�1

where ut � iid U [0; 1]
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DGP4 Near Unit Root

Qyt (� jyt�1) = �0 (�) + �1 (�) yt�1
=
�
2 + 3��1 (�)

�
+�

I
�
2 + 3��1 (�) � 0

�
+ 0:8I

�
2 + 3��1 (�) < 0

��
yt�1

yt =
�
2 + 3��1 (ut)

�
+�

I
�
2 + 3��1 (ut) � 0

�
+ 0:8I

�
2 + 3��1 (ut) < 0

��
yt�1

where ut � iid U [0; 1]

DGP5 Near Unit Root

Qyt (� jyt�1) = �0 (�) + �1 (�) yt�1
=
�
2 + 3��1 (�)

�
+
�
0:95I

�
2 + 3��1 (�) � 0

�
+0:8I

�
2 + 3��1 (�) < 0

��
yt�1

yt =
�
2 + 3��1 (ut)

�
+
�
0:95I

�
2 + 3��1 (ut) � 0

�
+0:8I

�
2 + 3��1 (ut) < 0

��
yt�1

where ut � iid U [0; 1]

The simulations are performed with an in-sample size of n = 100 with the
number of 1-period ahead rolling forecasts used in the hold-out sample set at
K = 400. A random sample of N = n +K realizations from one of the above
DGPs is generated. Starting from T = n; � � � ; N � 1, 1-period ahead forecast
on YT+1 is performed using rolling quantile regression of Koenker and Bassett
(1978) with � 2 (0:1; 0:2; � � � ; 0:8; 0:9) or expectile regression in Newey and
Powell (1987) with ! 2 (0:1; 0:2; � � � ; 0:8; 0:9) as well as arima (p; d; q) based on
the data Z = fZtgTt=T�n+1 = fYtg

T
t=T�n+1. The quantile regression minimizes

the sample MWAE of the residuals as its loss function while the expectile
regression minimizes the sample RMWSE. Hence, the MWAE should be
the appropriate metric to use in measuring the accuracy of forecasts performed
using the quantile regressions while RMWSE should be used as the metric
when forecasts are performed using expectile regressions.
Table (1) presents the sample RMSE and MWAE for the various DGPs

when the quantile regressions and the arima are used to generate the forecast
with the asymmetric lin-lin loss function. We can see from Table (1) that the
smallest MWAE (highlighted as the boxed numbers) of the quantile regression
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forecasts occurs at the weight w that matches the corresponding � of the quantile
regressions used in generating the forecasts in general with the exception of the
near unit root DGP3, DGP4 and DGP5 where the smallest MWAE occurs
at w = 0:3 for � = 0:4. Hence, if MAE (MWAE with w = 0:5) is used in
assessing the accuracy of the forecasts, only the forecasts performed using the
quantile regression with � = 0:5 which corresponds to the symmetric lin-lin loss
with � = 0:5 will be deemed as being optimal. When the forecasters use any
of the asymmetric loss function with � 6= 0:5, their forecast performance will be
deemed as suboptimal using the MAE metric. However, if the MWAE metric
with the weight w that corresponds to the asymmetric parameter � of the lin-
lin loss function is used, instead, all the quantile regression forecasts performed
using the di¤erent degrees of asymmetry determined by � will be deemed as
optimal. The smallest RMSE occurs at � = 0:5 for the two stationary DGPs
and at � = 0:4 for the three near unit root DGPs. Similarly, only the quantile
regression forecasts with � close to 0:5 are considered as optimal using the
RMSE metric. The forecasts performed using the arima model is comparable
to those performed using the quantile regression with � close to 0:5 when RMSE
is used.
Table (2) presents the sample RMSE and MWSE when the expectile re-

gressions are used to generate the forecasts with the asymmetric quad-quad
loss function. Again, the smallest MWSE of the expectile regression forecasts
occurs at the weight w that matches the corresponding ! used in generating
the forecasts. The results support our recommendation that the summary mea-
sures used to measure forecasts accuracy should match the loss functions used
in generating the forecasts.
To use the correct weights w in the MWAE or MWSE metrics, one will

need to know the weights of the asymmetric loss function used by a forecaster,
which are typically unknown. Fortunately, this asymmetric parameter of the
loss function can be recovered through the MZ quantile/regression approach
that we will introduce next.

3 Recovering the Loss Functions via theMincer-
Zarnowitz Prediction-Realization Analysis

In this section, we illustrate how we can recover (back-out) the loss functions
used by a forecaster using the quantile regression or expectile regression set in
the framework introduced in Mincer and Zarnowitz (1969). If the risk expressed
in Equation (1) is di¤erentiable, the �rst order condition for the minimization
of the risk becomes

EY

h
L
0
(f (Z; �) ; Y; Z) jZ; �

i
=

Z
y

d

df
L (f (z; �) ; y; z) pY (yjz; �) dy = 0 (2)

As mentioned in Elliott and Timmermann (2008), the generalized forecast er-
rors, L0

(f (Z; �) ; Y; Z), should be unpredictable and follow a martingale dif-
ference sequence given all the information utilized to generate the forecasts.
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Table 1: Sample MWAE and RMSE for the quantile regression and arima �ts
under the various DGPs. The boxed numbers correspond to the � that yields
the smallest MWAE.

MWAE
DGPs w RMSE

� 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 1.16 1.92 2.68 3.45 4.21 4.97 5.74 6.50 7.26 5.00
0.2 1.27 1.80 2.34 2.87 3.40 3.94 4.47 5.00 5.54 4.17
0.3 1.58 1.91 2.25 2.58 2.91 3.25 3.58 3.92 4.25 3.62
0.4 2.10 2.24 2.37 2.51 2.65 2.78 2.92 3.06 3.19 3.28

DGP1 0.5 2.67 2.65 2.63 2.60 2.58 2.56 2.53 2.51 2.49 3.22
0.6 3.42 3.23 3.04 2.86 2.67 2.48 2.29 2.11 1.92 3.34
0.7 4.30 3.95 3.61 3.26 2.92 2.57 2.23 1.89 1.54 3.66
0.8 5.65 5.10 4.55 4.00 3.45 2.90 2.35 1.80 1.25 4.24
0.9 7.58 6.77 5.97 5.16 4.36 3.55 2.75 1.95 1.14 5.18
arima 2.61 2.59 2.58 2.56 2.55 2.53 2.51 2.50 2.48 3.21

0.1 1.00 1.74 2.48 3.22 3.97 4.71 5.45 6.19 6.93 4.81
0.2 1.11 1.61 2.10 2.60 3.09 3.59 4.08 4.57 5.07 3.87
0.3 1.36 1.69 2.02 2.35 2.68 3.01 3.34 3.67 4.00 3.39
0.4 1.72 1.92 2.11 2.31 2.51 2.70 2.90 3.09 3.29 3.14

DGP2 0.5 2.30 2.33 2.36 2.39 2.43 2.46 2.49 2.52 2.56 3.02
0.6 2.90 2.79 2.68 2.57 2.46 2.35 2.24 2.13 2.02 3.04
0.7 3.83 3.55 3.27 2.99 2.71 2.43 2.16 1.88 1.60 3.32
0.8 5.44 4.91 4.38 3.85 3.32 2.79 2.26 1.73 1.20 4.00
0.9 7.16 6.40 5.64 4.88 4.12 3.36 2.60 1.84 1.08 4.82
arima 2.38 2.39 2.39 2.40 2.41 2.42 2.43 2.44 2.45 3.02

0.1 3.71 5.77 7.83 9.89 11.95 14.01 16.07 18.13 20.19 13.62
0.2 4.45 5.29 6.13 6.96 7.80 8.63 9.47 10.30 11.14 9.11
0.3 5.52 5.40 5.27 5.14 5.01 4.89 4.76 4.63 4.50 7.39
0.4 5.81 5.52 5.22 4.93 4.64 4.35 4.05 3.76 3.47 7.43

DGP3 0.5 6.23 5.82 5.40 4.99 4.58 4.16 3.75 3.34 2.93 7.57
0.6 6.92 6.35 5.79 5.22 4.65 4.08 3.51 2.95 2.38 7.81
0.7 7.81 7.07 6.34 5.60 4.87 4.13 3.39 2.66 1.92 8.15
0.8 9.45 8.47 7.49 6.51 5.53 4.55 3.57 2.59 1.62 8.80
0.9 11.67 10.40 9.13 7.86 6.59 5.31 4.04 2.77 1.50 9.68
arima 5.43 5.39 5.35 5.31 5.26 5.22 5.18 5.14 5.10 7.38

0.1 1.97 3.66 5.34 7.03 8.71 10.40 12.08 13.77 15.45 10.22
0.2 2.21 3.54 4.86 6.19 7.52 8.84 10.17 11.50 12.82 8.92
0.3 3.77 4.25 4.73 5.22 5.70 6.18 6.67 7.15 7.63 6.79
0.4 4.89 4.77 4.66 4.54 4.42 4.30 4.19 4.07 3.95 5.81

DGP4 0.5 5.45 5.15 4.85 4.55 4.25 3.95 3.64 3.34 3.04 5.97
0.6 6.26 5.78 5.30 4.81 4.33 3.85 3.37 2.89 2.41 6.25
0.7 7.36 6.68 5.99 5.31 4.62 3.94 3.25 2.57 1.88 6.70
0.8 8.60 7.73 6.85 5.98 5.10 4.23 3.35 2.48 1.60 7.25
0.9 10.86 9.68 8.51 7.33 6.16 4.98 3.81 2.63 1.46 8.24
arima 4.67 4.66 4.66 4.65 4.65 4.64 4.64 4.63 4.63 5.78

0.1 1.59 2.91 4.22 5.54 6.85 8.17 9.48 10.80 12.11 8.00
0.2 1.74 2.81 3.88 4.94 6.01 7.07 8.14 9.20 10.27 7.08
0.3 3.13 3.39 3.65 3.91 4.17 4.43 4.69 4.95 5.21 4.91
0.4 3.66 3.65 3.64 3.63 3.63 3.62 3.61 3.60 3.59 4.55

DGP5 0.5 4.19 4.03 3.86 3.69 3.52 3.35 3.18 3.01 2.85 4.62
0.6 5.00 4.65 4.30 3.95 3.59 3.24 2.89 2.54 2.19 4.86
0.7 6.14 5.59 5.03 4.48 3.92 3.36 2.81 2.25 1.70 5.31
0.8 7.29 6.55 5.82 5.09 4.36 3.62 2.89 2.16 1.43 5.80
0.9 9.10 8.13 7.15 6.18 5.21 4.23 3.26 2.29 1.31 6.66
arima 3.75 3.73 3.70 3.68 3.65 3.63 3.60 3.58 3.56 4.599



Table 2: SampleMWSE and RMSE for the expectile regression and arima �ts
under the various DGPs. The boxed numbers correspond to the ! that yields
the smallest MWSE.

MWSE
DGPs w RMSE

! 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 4.39 7.03 9.68 12.33 14.98 17.62 20.27 22.92 25.56 3.87
0.2 4.75 6.40 8.06 9.71 11.37 13.02 14.68 16.33 17.98 3.37
0.3 5.57 6.61 7.65 8.70 9.74 10.78 11.82 12.86 13.90 3.12
0.4 6.70 7.25 7.81 8.36 8.92 9.47 10.03 10.59 11.14 2.99

DGP1 0.5 8.15 8.27 8.38 8.50 8.61 8.73 8.84 8.96 9.07 2.93
0.6 10.08 9.75 9.42 9.09 8.76 8.42 8.09 7.76 7.43 2.96
0.7 12.80 11.96 11.12 10.28 9.44 8.60 7.76 6.92 6.09 3.07
0.8 17.04 15.54 14.04 12.53 11.03 9.53 8.03 6.53 5.03 3.32
0.9 25.04 22.46 19.89 17.32 14.74 12.17 9.59 7.02 4.44 3.84
arima 8.66 8.70 8.74 8.79 8.83 8.87 8.92 8.96 9.00 2.97

0.1 4.25 6.93 9.61 12.29 14.96 17.64 20.32 23.00 25.67 3.87
0.2 4.65 6.28 7.90 9.53 11.15 12.77 14.40 16.02 17.65 3.34
0.3 5.47 6.49 7.50 8.51 9.52 10.53 11.55 12.56 13.57 3.09
0.4 6.56 7.11 7.66 8.21 8.75 9.30 9.85 10.40 10.95 2.96

DGP2 0.5 7.94 8.08 8.21 8.35 8.49 8.62 8.76 8.89 9.03 2.91
0.6 9.73 9.46 9.18 8.91 8.63 8.36 8.08 7.80 7.53 2.94
0.7 12.21 11.47 10.73 9.99 9.26 8.52 7.78 7.05 6.31 3.04
0.8 16.00 14.67 13.34 12.00 10.67 9.33 8.00 6.67 5.33 3.27
0.9 23.17 20.87 18.56 16.26 13.96 11.66 9.35 7.05 4.75 3.74
arima 7.89 8.06 8.22 8.39 8.55 8.72 8.88 9.04 9.21 2.92

0.1 28.85 41.21 53.56 65.92 78.27 90.63 102.98 115.34 127.69 8.85
0.2 31.40 36.70 42.00 47.30 52.60 57.90 63.21 68.51 73.81 7.25
0.3 36.40 37.94 39.47 41.01 42.54 44.07 45.61 47.14 48.67 6.52
0.4 42.21 41.21 40.21 39.20 38.20 37.20 36.20 35.19 34.19 6.18

DGP3 0.5 48.43 45.54 42.64 39.74 36.85 33.95 31.05 28.16 25.26 6.07
0.6 55.07 50.63 46.19 41.76 37.32 32.88 28.45 24.01 19.57 6.11
0.7 62.49 56.67 50.85 45.03 39.21 33.39 27.57 21.75 15.93 6.26
0.8 72.09 64.79 57.48 50.17 42.86 35.55 28.24 20.93 13.62 6.55
0.9 88.22 78.77 69.31 59.86 50.40 40.95 31.50 22.04 12.59 7.10
arima 47.51 44.77 42.03 39.29 36.55 33.81 31.07 28.33 25.59 6.05

0.1 38.14 54.45 70.76 87.08 103.39 119.70 136.02 152.33 168.64 10.17
0.2 46.04 52.48 58.93 65.37 71.82 78.26 84.71 91.15 97.60 8.47
0.3 56.32 56.96 57.60 58.24 58.87 59.51 60.15 60.79 61.43 7.67
0.4 66.46 63.37 60.27 57.17 54.07 50.97 47.87 44.78 41.68 7.35

DGP4 0.5 75.84 70.17 64.50 58.83 53.16 47.49 41.82 36.15 30.48 7.29
0.6 84.62 77.03 69.45 61.87 54.29 46.70 39.12 31.54 23.95 7.37
0.7 93.66 84.45 75.24 66.03 56.82 47.61 38.40 29.19 19.98 7.54
0.8 104.58 93.70 82.82 71.94 61.06 50.18 39.30 28.42 17.54 7.81
0.9 120.95 107.89 94.83 81.77 68.71 55.65 42.59 29.53 16.47 8.29
arima 74.52 69.15 63.79 58.42 53.05 47.68 42.32 36.95 31.58 7.28

0.1 9.73 15.40 21.06 26.72 32.38 38.04 43.70 49.36 55.02 5.69
0.2 11.46 14.49 17.53 20.56 23.59 26.62 29.65 32.69 35.72 4.86
0.3 14.33 15.63 16.93 18.23 19.53 20.83 22.13 23.43 24.73 4.42
0.4 17.57 17.64 17.70 17.77 17.83 17.90 17.97 18.03 18.10 4.22

DGP5 0.5 20.99 20.09 19.20 18.31 17.42 16.52 15.63 14.74 13.84 4.17
0.6 24.70 22.98 21.26 19.55 17.83 16.11 14.40 12.68 10.96 4.22
0.7 29.11 26.59 24.06 21.53 19.01 16.48 13.96 11.43 8.91 4.36
0.8 34.95 31.52 28.09 24.65 21.22 17.79 14.35 10.92 7.49 4.61
0.9 44.60 39.88 35.15 30.43 25.70 20.98 16.25 11.53 6.80 5.07
arima 22.52 21.40 20.27 19.15 18.03 16.91 15.78 14.66 13.54 4.2510



This leads to the following sample analog of the orthogonality condition for a
one-period ahead forecast:

1

K

n+K�1X
t=n

L
0
(f (zt; �) ; yt+1; zt) = 0 (3)

In addition, L0
(f (zt; �) ; yt+1; zt) should be uncorrelated with any information

used in the forecast at time t. Hence, another common orthogonality condition
used is

1

K

n+K�1X
t=n

L
0
(f (zt; �) ; yt+1; zt) vt = 0 (4)

where vt is any function of the data, fzsgts=1, available at time t.
It is well know from the orthogonality condition in Equation (2) that the

optimal forecast when minimizing the risk in Equation (1) for the symmetric
square loss function is the conditional mean function, f (z; �) = E (Y jZ = z; �),
while the conditional median is the optimal forecast for the symmetric ab-
solute loss function. Likewise, the conditional quantile function, f (z; �; �) =
F�1Y (� jZ = z; �) = Q� (Y jZ = z; �), is the optimal forecast for the asymmet-
ric lin-lin loss (see, e.g., Koenker, 2005, pp. 5-6) and the conditional expectile
function, f (z; �) = �! (Y jZ = z; �), is the optimal forecast for the quad-quad
loss function; see, e.g. Newey and Powell (1987, p. 823). Hence, the sample
orthoganality condition in Equation (3) yields the sample least-squares regres-
sions for the symmetric square loss function, the sample least-absolute-deviation
regressions for the symmetric absolute loss function, the quantile regressions for
the lin-lin loss and the expectile regressions for the quad-quad loss function.
Mincer and Zarnowitz (1969) use the forecast, ŷ = f (z; �), as vt in the

orthogonality condition in Equation (4) for the square-error loss and this boils
down to performing an ordinary least squared regression on the following linear
model:

yt+1 = �+ �ŷt+1 + "t+1 (5)

where "t+1 is an error term satisfying E ("t+1jzt) = 0. The unbiasedness and
e¢ ciency of the forecast can be evaluated by testing the intercept and slope
through the joint hypothesis,

H0 : � = 0 \ � = 1 (6)

Optimal forecast is characterized by the upholding of H0. Since the conditional
quantile is the optimal forecast for the lin-lin loss function, we can perform the
� quantile regression for the model in Equation (5) with 0 < � < 1, and "t+1
such that F�1et+1 (�) = 0; the optimality of the forecast can then be evaluated
using the Wald-type test on the joint hypothesis:

H0 : �� = 0 \ �� = 1 (7)

where �� and �� are regression quantile estimates of the intercept and slope
coe¢ cients.
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Similarly, for the quad-quad loss function, the optimality of the forecast can
be tested through the similar joint hypothesis

H0 : �! = 0 \ �! = 1 (8)

using the !-expectile regression with 0 < ! < 1. Assuming the loss function
used by a forecaster belongs to one of the �exible lin-lin or quad-quad family,
we can recover (back-out) the parameter of asymmetry by selecting the � or !
which fails to reject the joint hypothesis in Equation (7) or Equation (8). We
coin this as the "MZ quantile/expectile regression approach".
To illustrate the MZ quantile/expectile regression approach, we �rst gener-

ate n +K = 300 observations using DGP1 of Section 2.1. The �rst n = 100
of these observations are used as the in-sample data which serves as the basis
for future forecasts using quantile regression estimates to simulate the lin-lin
loss function adopted by a forecaster. The remaining K = 200 observations
are used as the 200 realized observations fyt+1gKt=1 in the hold�out sample for
which the forecasts are targeting. Next, nine sets of K = 200 forecast ob-
servations fŷt+1gKt=1 are constructed using nine rolling quantile regression �ts
to the in-sample data, one for each of �f 2 f0:1; 0:2; � � � ; 0:8; 0:9g, to simulate
nine di¤erent lin-lin lost functions used by the forecaster, each parameterized
by the asymmetry parameter �f . Hence, we have 200 pairs of predictions and
realizations fyt+1; ŷt+1gKt=1 for each of the nine �f 2 f0:1; 0:2; � � � ; 0:8; 0:9g. To
try to recover the actual �f used in one of the nine asymmetric lin-lin loss
functions that generated the forecast,fŷt+1gKt=1, we perform nine quantile re-
gressions with �MZ 2 f0:1; 0:2; � � � ; 0:8; 0:9g for Equation (5) using each of the
nine sets of predictions and realizations pairs fyt+1; ŷt+1gKt=1. We expect the
quantile regression for Equation (5) with �MZ equals to the corresponding �f
that generated the forecasts to be closest to the 45o line and not reject the null
hypothesis in Equation (7).
Figure 1 shows the results of the nine �MZ 2 f0:1; 0:2; � � � ; 0:8; 0:9g quan-

tile regression �ts for Equation (5) for four selected �f 2 f0:2; 0:4; 0:6; 0:8g
quantile regressions used in generating the forecasts. Each plot presents the
nine �MZ quantile regression �ts for Equation (5) for each of the four �f 2
f0:2; 0:4; 0:6; 0:8g quantile regression predictions. The red line represents the
45o line, the green line is the ordinary least-squares regression line, the blue
line is the �MZ = �f quantile regression line when the recovered �MZ matches
exactly the �f that is used in generating the forecast while the grey lines are
the �MZ quantile regression �ts for �MZ 6= �f . Figure 2 shows similar results
of expectile regressions for Equation (5) for !f 2 f0:2; 0:4; 0:6; 0:8g to illustrate
the case when the quad-quad loss function instead of the lin-lin loss function
is used in generating the forecasts. Again the red line represents the 45o line,
the green line is the ordinary least-squares regression line, the blue line is the
!MZ = !f expectile regression line while the grey lines are the !MZ expectile
regression �ts for !MZ 6= !f . Figure 3 and Figure 4 show the results for the
quantile regressions and expectile regressions, respectively, for DGP4.
We can see that both the �MZ-quantile regressions and !MZ-expectile regres-
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Figure 1: A single realization of the prediction-realization quantile regressions
for DGP1.
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Figure 2: A single realization of the prediction-realization expectile regressions
for DGP1.
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Figure 3: A single realization of the prediction-realization quantile regressions
for DGP4.
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Figure 4: A single realization of the prediction-realization expectile regressions
for DGP4.
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sions of yt+1 on ŷt+1 tract the 45o line closely when �MZ = �f or !MZ = !f
while the ordinary least-squares regression line deviates from the 45o line in
general except when �f = 0:5 or !f = 0:5 which are not shown in the �gures.

3.1 Simulations of Mincer-Zarnowitz Prediction-Realization
Optimality Test

To see how the MZ quantile/expectile regression approach performs when ap-
plied to the lin-lin and quad-quad loss function, we perform simulations using
the model speci�ed in Equation (5) for the various DGPs depicted in Sec-
tion 2.1. The size of the in-sample data used in the �rst-stage estimation of
the various �f (!f ) 2 [0:1; 0:2; � � � ; 0:8; 0:9] quanitle (expectile) regressions are
n = [100; 200; 400]. These estimated �f (!f )-quantile (expectile) regressions
are subsequently used to perform forecasts for the K = N � n = [100; 200; 400]
hold-out periods.
Each of the subsequent plots in Figure 5 to Figure 9 show the percentage of

the NMC = 100 Monte Carlo replications in which the H0 in (7) is not rejected
for the various combinations of n, K, �MZ , �f , and DGPs for the MZ quantile
regression approach.

In general, the percentage of non-rejection is the highest when �MZ = �f as
we will expect. The sample size n used in the �rst-stage in-sample estimation
does not have as signi�cant an impact on the percentage of "correct" guess of
the weight, �f , used in the forecasts in the lin-lin loss function as the sample size
K in the second hold-out stage. This is to be expected for the consistency of the
test in the second-stage relies on the sample size K in the second-stage. Results
are qualitatively similar for the MZ expectile regression approach. Hence, the
MZ quantile/expectile approach that �nds the �MZ (!MZ) quantile (expectile)
regression for which H0 in (7) ((8))is not being rejected provides a reliable way
to recover the weight, �f (!f ), used in the lin-lin (quad-quad) loss function of
the forecaster.

3.2 Robustness of theMincer-Zarnowitz Prediction-Realization
Optimality Test to Model Misspeci�cations

To study how robust is the MZ quantile/expectile regression approach to model
misspeci�cations, we performed two simulations based on the DGPs introduced
in Section 2.1: (1) The DGPs are augmented with an additional linear term xt
where  = 1, xt � �2 (10) is iid from a chi-square distribution with ten degrees
of freedom and (2) the DGPs are augmented with an additional nonlinear term
x2t where  = 1, xt � �2 (10). The percentages of non-rejection of H0 in (7)
for quantile regressions without the xt in the true models (misspeci�ed model)
and those with the augmented xt (correctly speci�ed model) for the augmented
DGP1 are presented in Figure 10 and Figure 11, respectively while those for the
augmented DGP3 are presented in Figure 12 and Figure 13, respectively. The
results for the augmented DGP2, DGP4 and DGP5 are similar and, hence, are
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Figure 5: Percentage of the total number of replications (NMC) that fails to
reject H0 for DGP1.
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Figure 6: Percentage of the total number of replications (NMC) that fails to
reject H0 for DGP2.
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Figure 7: Percentage of the total number of replications (NMC) that fails to
reject H0 for DGP3.
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Figure 8: Percentage of the total number of replications (NMC) that fails to
reject H0 for DGP4.
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Figure 9: Percentage of the total number of replications (NMC) that fails to
reject H0 for DGP5.
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not presented here. The results for the expectile regressions are qualitatively
similar and are, hence, not reported here either.
For the second simulation where DGP1 is augmented with the additional

non-linear term, the results are presented in Figure 14 and Figure 15, respec-
tively, for the misspeci�ed and correctly speci�ed stage 1 quantile regressions
while Figure 16 and Figure 17, respectively, present those for DGP3.
We can see that the MZ quantile/expectile regression approach is quite ro-

bust to misspeci�cations in the regression equation in terms of missing variables
for the high percentages of non-rejection cluster around the diagonals when
�MZ = �f and !MZ = !f .

4 Applications

In this section, we apply the MZ quantile/expectile regression approach to try
to recover the asymmetric parameter in the potentially asymmetric loss func-
tions used in the Federal Reserves� forecasting of economic variables and the
forecasting of an electronic component manufacturer�s demand in its supply
chain.

4.1 The Federal Reserve�s Greenbook Forecast

The report "Current Economical and Financial Conditions: Summary and Out-
look" prepared by the Board of Governors of the Federal Reserve System for
the Federal Open Market Committee Meeting is viewed by many as the author-
itative forecast of the important economic variables such as GDP, in�ation rate,
unemployment rate, etc. It is also known as the "Greenbook". Many studies
have been done using the Greenbook forecasts and found that the forecasts were
not optimal. The question though is whether the Greenbook forecasts are really
suboptimal or they are in fact optimal for an asymmetric loss function used by
the Federal Reserves.
Similar to Patton and Timmermman (2007), we use the real GDP and the

Federal Reserves�forecast from the �rst quarter of 1969 to the �rst quarter of
2000. Figure 18 presents the recovered asymmetric parameter � used in the Fed-
eral Reserve�s Greenbook forecasts using the quantile regression approach while
Figure 19 shows the asymmetric parameter ! recovered using the expectile re-
gression. The ordinary least squares regression reject the null hypothesis in (6)
and, hence, the Greenbook�s forecast is deemed not optimal if we assume the
Federal Reserves actually used the square loss decision function. The MZ quan-
tile regression approach fails to reject the null in (7) for � 2 f:30; :35; :40; :45g
while the expectile regression fails to reject the null in (8) for ! 2 f:35; :40; :45g.
Using the quantile regression estimates, the ratio of optimal loss on negative er-
rors to positive errors, L (�e) =L (e) = (1� �) =� is between 1:22 and 2:33 while
the ratio derived from the expectile regression estimates falls between 1:22 and
1:86. Patton and Timmermman�s (2007) average estimated ratio is 1.44 with
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Figure 10: Percentage of non-reject of H0 for the misspeci�ed quantile regres-
sions for DGP1 augmented with an linear term xt.
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Figure 11: Percentage of non-reject of H0 for the correctly speci�ed quantile
regressions for DGP1 augmented with an linear term xt.
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Figure 12: Percentage of non-reject of H0 for the incorrectly speci�ed quantile
regressions for DGP3 augmented with an linear term xt.
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Figure 13: Percentage of non-reject of H0 for the correctly speci�ed quantile
regressions for DGP3 augmented with an linear term xt.
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Figure 14: Percentage of non-reject of H0 for the misspeci�ed quantile regres-
sions for DGP1 augmented with a nonlinear term x2t .
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Figure 15: Percentage of non-reject of H0 for the correctly speci�ed quantile
regressions for DGP1 augmented with a nonlinear term x2t .
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Figure 16: Percentage of non-reject of H0 for the misspeci�ed quantile regres-
sions for DGP3 augmented with a nonlinear term x2t .
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Figure 17: Percentage of non-reject of H0 for the correctly speci�ed quantile
regressions for DGP3 augmented with a nonlinear term x2t .
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Figure 18: Mincer-Zarnowitz quantile regression estimates of the asymmetric
parameter used in the Federal Reserve�s Greenbook forecast.

a minimum of 0.52 and a maximum of 2.76 when the loss function does not
depend on the forecasts, and the average is 3.48, 1.97, and 1.26 for the 0.25,
0.5, and 0.75 quantiles of the real GDP growth when the loss function depends
on the forecasts. So the general picture of the inference we arrive at using the
MZ quantile/expectile regression approach is consistent with what Patton and
Timmermman (2007) have found that the Federal Reserves appears to value
over prediction roughly 1:5 times more costly than under prediction.

4.2 An Electronic ComponentManufacturer Supply Chain

We have data on the actual shipment (yt+h) and one-month through twelve-
month ahead (h = 1; � � � ; 12) forecasts (ŷt+h) for 106 stock-keeping units (SKU)
in 19 product families (FAM) processed at 4 global business units (GBU) and
6 distribution hubs (HUB) across 3 regions (REG) over the globe of an elec-
tronic component manufacturer in the U.S. We only analyze the combinations of
SKU, FAM, GBU, HUB and REG with at least 30 usable observations. There
are altogether 90 such combinations. Among these combinations, the incom-
plete observations with zero actual shipment are dropped from the analysis
even though there are positive forecasts.
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Figure 19: Mincer-Zarnowitz expectile regression estimates of the asymmetric
parameter used in the Federal Reserve�s Greenbook forecast.
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Figure 20: Histogram of the asymmetric parameter of the lin-lin loss function
recovered by the MZ quantile regression approach.

The recovered asymmetric parameter of the lin-lin loss function and quad-
quad loss function at the one-month through twelve-month forecast horizons
using the MZ quantile/expectile approach are presented in the histograms in Fig-
ure 20 and Figure 21, respectively. We can see from both �gures that the recov-
ered asymmetric parameters for both loss functions have values scattered around
� = 0:8 and ! = 0:8 for all the di¤erent forecast horizons. The global median
of the median � at each of the twelve forecast horizons is 0:8 and so is the global
median of the median ! across the various horizons. The global mean of the
mean � at the various forecast horizons is 0:78 while the global mean of the mean
! is 0:76. This suggests that the manufacturer weighs positive forecast errors
(under forecasts) about four times (L (e) =L (�e) = �= (1� �) = 0:8=0:2 = 4) as
costly as negative forecast errors (over forecasts). Under forecasts will lead to
unful�lled order, which could lead to loss of goodwill, reputations, and loss of
current and future sales while over forecasts will result in over inventory, higher
insurance costs, and tied up capital. In this case, the manufacturer views under
forecasts more costly than over forecasts.
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Figure 21: Histogram of recovered asymmetric parameter of the quad-quad loss
function recovered by the MZ expectile regression approach.
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5 Conclusions

Forecast is ubiquitous in all areas of daily life. Typical summary metrics used in
measuring forecast performance are the sample root-mean-square error and the
mean-absolute error. However, these popular summary matrics are appropriate
only for the symmetric mean-square error and mean-absolute error loss functions
used by the forecasters. We have argued and demonstrated that when forecasters
use an asymmetric loss function such as the lin-lin or quad-quad lost functions,
the appropriate summary metrics for measuring forecast performance should,
instead, be the sample mean-weighted-absolute error and mean-weighted-square
error, respectively, that re�ect the di¤erent weights assigned to over and under
prediction. However, to correctly utilize the sample mean-weighted-absolute
error and mean-weighted-square error, one will need to know the weights for over
and under prediction that a forecaster assiged when performing the forecasts.
These weights that characterize the asymmetric loss functions can be recovered
in the recommended MZ quantile/expectile regression approach.
On the evaluation of forecast optimality, we provide theoretical justi�cation

for extending Mincer and Zarnowitz (1969) prediction-realization framework
that is based on the ordinary least-squares regression to one that uses the quan-
tile regressions and expectile regressions. Simulation results demonstrating the
e¢ cacy of the MZ quantile/expectile regression approach are provided and show
that this approach is robust to speci�c forms of model misspecifaction in the
data generating process.
The MZ quantile/expectile regression approach is then applied to Federal

Reserve�s Greenbook forecast and the forecast of an electronic component man-
ufactuere�s demand in its supply chain. We have found that the Federal Reserve
appeared to value over prediction roughly 1.5 times more costly than under
prediction. We have also found that the electronic component manufacterer
appeared to weigh under forecast about four times as costly as over forecast.
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