53 research outputs found

    Duodenal enteroglucagonoma revealed by differential comparison of serum and tissue glucagon reactivity with Siemens' Double Glucagon Antibody and DakoCytomation's Polyclonal Rabbit Anti-Human Glucagon: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>This case report demonstrates that the differential immunohistochemical reactivities of Siemens' <it>Double Antibody Glucagon </it>compared to DakoCytomation's <it>Polyclonal Rabbit Anti-Human Glucagon </it>allow for pathologic distinction of enteral versus pancreatic glucagonoma.</p> <p>Case presentation</p> <p>A 64-year-old Caucasian man was diagnosed with a duodenal enteroglucagonoma following presentation with obstructive jaundice. He had a low serum glucagon level using Siemens' <it>Double Antibody Glucagon</it>, a clinical syndrome consistent with glucagon hypersecretion. A periampullary mass biopsy proved to be a neuroendocrine tumor, with positive immunohistochemical reactivity to DakoCytomation's <it>Polyclonal Rabbit Anti-Human Glucagon</it>.</p> <p>Conclusions</p> <p>Differential comparison of the immunohistochemical reactivities of Siemens' <it>Double Antibody Glucagon </it>and DakoCytomation's <it>Polyclonal Rabbit Anti-Human Glucagon </it>discerns enteroglucagon from pancreatic glucagon.</p

    Mitochondrial Diabetes in Children: Seek and You Will Find It

    Get PDF
    Maternally Inherited Diabetes and Deafness (MIDD) is a rare form of diabetes due to defects in mitochondrial DNA (mtDNA). 3243 A>G is the mutation most frequently associated with this condition, but other mtDNA variants have been linked with a diabetic phenotype suggestive of MIDD. From 1989 to 2009, we clinically diagnosed mitochondrial diabetes in 11 diabetic children. Diagnosis was based on the presence of one or more of the following criteria: 1) maculopathy; 2) hearing impairment; 3) maternal heritability of diabetes/impaired fasting glucose and/or hearing impairment and/or maculopathy in three consecutive generations (or in two generations if 2 or 3 members of a family were affected). We sequenced the mtDNA in the 11 probands, in their mothers and in 80 controls. We identified 33 diabetes-suspected mutations, 1/33 was 3243A>G. Most patients (91%) and their mothers had mutations in complex I and/or IV of the respiratory chain. We measured the activity of these two enzymes and found that they were less active in mutated patients and their mothers than in the healthy control pool. The prevalence of hearing loss (36% vs 75–98%) and macular dystrophy (54% vs 86%) was lower in our mitochondrial diabetic adolescents than reported in adults. Moreover, we found a hitherto unknown association between mitochondrial diabetes and celiac disease. In conclusion, mitochondrial diabetes should be considered a complex syndrome with several phenotypic variants. Moreover, deafness is not an essential component of the disease in children. The whole mtDNA should be screened because the 3243A>G variant is not as frequent in children as in adults. In fact, 91% of our patients were mutated in the complex I and/or IV genes. The enzymatic assay may be a useful tool with which to confirm the pathogenic significance of detected variants

    Lipoprotein (a), C-reactive protein and some metabolic cardiovascular risk factors in type 2 DM

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lipoprotein (a) (LP (a) is an independent cardiovascular risk factor that is not widely studied in people of sub-Saharan African origin. The aim of this report is to determine the frequency of occurrence of elevated Lp (a) and possible relationship with total cholesterol (TCHOL), high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C), triglycerides (TG), C reactive protein (CRP) and serum uric acid (SUA).</p> <p>Methods</p> <p>This is a cross sectional study carried out in 200 Nigerian patients with type 2 DM and 100 sex and age matched healthy Controls aged between 32-86 years. We determined the frequency of occurrence of elevated Lp (a) levels in the study subjects and compared clinical and biochemical variables between type 2 diabetic patients and non-diabetic patients. Clinical and biochemical parameters were also compared between subjects with type 2 DM who had elevated LP (a) and normal LP (a) levels. Long term glycaemic control using glycosylated haemoglobin was determined and compared in the study subjects. Test statistics used include chi square, correlation coefficient analysis and Student's t test.</p> <p>Results</p> <p>The mean Lp(a) concentration differed significantly between type 2 diabetic patients and the Control subjects (18.7 (5.8) mg/dl vs 23 (6.8) mg/dl, 0.00001). Similarly, the prevalence of high LP (a) levels in type 2 DM patients was significantly higher than that of the Control subjects (12.5% vs 4%, p-0.019). The mean levels of the lipid profile parameters (TCHOL, LDL-C, TG, LDL/HDL) and CRP were significantly higher in DM patients than in the Control subjects. The mean LP (a) levels were comparable in both sexes and in DM subjects with and without hypertension. TG was the only parameter that differed significantly between subjects with elevated Lp (a) levels and those with normal Lp (a) levels. There was a significant positive correlation (r) between Lp(a) levels and TG, LDL-C. TCHOL, LDL/HDL and uric acid. No association was found between Lp(a) and clinical parameters such as age and anthropometric indices.</p> <p>Conclusion</p> <p>We have showed that Lp (a), CRP and other CVS risk factors cluster more in patients with DM than non DM patients. Serum Lp (a) levels are not associated with anthropometric and glycaemic indices.</p

    NADPH Oxidase 2-Derived Reactive Oxygen Species Mediate FFAs-Induced Dysfunction and Apoptosis of β-Cells via JNK, p38 MAPK and p53 Pathways

    Get PDF
    Dysfunction of β-cell is one of major characteristics in the pathogenesis of type 2 diabetes. The combination of obesity and type 2 diabetes, characterized as ‘diabesity’, is associated with elevated plasma free fatty acids (FFAs). Oxidative stress has been implicated in the pathogenesis of FFA-induced β-cell dysfunction. However, molecular mechanisms linking between reactive oxygen species (ROS) and FFA-induced β-cell dysfunction and apoptosis are less clear. In the present study, we test the hypothesis that NOX2-derived ROS may play a critical role in dysfunction and apoptosis of β-cells induced by FFA. Our results show that palmitate and oleate (0.5 mmol/L, 48 h) induced JNK activation and AKT inhibition which resulted in decreased phosphorylation of FOXO1 following nuclear localization and the nucleocytoplasmic translocation of PDX-1, leading to the reducing of insulin and ultimately dysfunction of pancreatic NIT-1 cells. We also found that palmitate and oleate stimulated apoptosis of NIT-1 cells through p38MAPK, p53 and NF-κB pathway. More interestingly, our data suggest that suppression of NOX2 may restore FFA-induced dysfunction and apoptosis of NIT-1 cells. Our findings provide a new insight of the NOX2 as a potential new therapeutic target for preservation of β-cell mass and function

    Stepwise screening for diabetes identifies people with high but modifiable coronary heart disease risk. The ADDITION study

    Get PDF
    AIMS/HYPOTHESIS: The Anglo-Danish-Dutch study of intensive treatment in people with screen-detected diabetes in primary care (ADDITION) is a pragmatic randomised controlled trial of the effectiveness of intensified multi-factorial treatment on 5 year cardiovascular morbidity and mortality rates in people with screen-detected type 2 diabetes in the Netherlands, UK and Denmark. This paper describes the baseline characteristics of the study population, their estimated risk of coronary heart disease and the extent to which that risk is potentially modifiable. METHODS: Stepwise screening strategies were performed using risk questionnaires and routine general practice data plus random blood glucose, HbA(1c) and fasting blood glucose measurement. Diabetes was diagnosed using the 1999 World Health Organization criteria and estimated 10 year coronary heart disease risk was calculated using the UK Prospective Diabetes Study risk engine. RESULTS: Between April 2001 and December 2006, 3,057 people with screen-detected diabetes were recruited to the study (mean age 59.7 years, 58% men) after a stepwise screening programme involving 76,308 people screened in 334 general practices in three countries. Their median estimated 10 year risk of coronary heart disease was 11% in women (interquartile range 7-16%) and 21% (15-30%) in men. There were differences in the distribution of risk factors by country, linked to differences in approaches to screening and the extent to which risk factors had already been detected and treated. The mean HbA(1c) at recruitment was 7.0% (SD 1.6%). Of the people recruited, 73% had a blood pressure >/=140/90 and of these 58% were not on antihypertensive medication. Cholesterol levels were above 5.0 mmol/l in 70% of participants, 91% of whom were not being treated with lipid-lowering drugs. CONCLUSIONS/INTERPRETATION: People with type 2 diabetes detected by screening and included in the ADDITION study have a raised and potentially modifiable risk of CHD. ClinicalTrials.gov ID no.: NCT 00237549

    Fatty acid-induced mitochondrial uncoupling in adipocytes as a key protective factor against insulin resistance and beta cell dysfunction: a new concept in the pathogenesis of obesity-associated type 2 diabetes mellitus

    Get PDF
    Type 2 diabetes is associated with excessive food intake and a sedentary lifestyle. Local inflammation of white adipose tissue induces cytokine-mediated insulin resistance of adipocytes. This results in enhanced lipolysis within these cells. The fatty acids that are released into the cytosol can be removed by mitochondrial β-oxidation. The flux through this pathway is normally limited by the rate of ADP supply, which in turn is determined by the metabolic activity of the adipocyte. It is expected that the latter does not adapt to an increased rate of lipolysis. We propose that elevated fatty acid concentrations in the cytosol of adipocytes induce mitochondrial uncoupling and thereby allow mitochondria to remove much larger amounts of fatty acids. By this, release of fatty acids out of adipocytes into the circulation is prevented. When the rate of fatty acid release into the cytosol exceeds the β-oxidation capacity, cytosolic fatty acid concentrations increase and induce mitochondrial toxicity. This results in a decrease in β-oxidation capacity and the entry of fatty acids into the circulation. Unless these released fatty acids are removed by mitochondrial oxidation in active muscles, these fatty acids result in ectopic triacylglycerol deposits, induction of insulin resistance, beta cell damage and diabetes. Thiazolidinediones improve mitochondrial function within adipocytes and may in this way alleviate the burden imposed by the excessive fat accumulation associated with the metabolic syndrome. Thus, the number and activity of mitochondria within adipocytes contribute to the threshold at which fatty acids are released into the circulation, leading to insulin resistance and type 2 diabetes

    Thymidine Kinase 2 Deficiency-Induced Mitochondrial DNA Depletion Causes Abnormal Development of Adipose Tissues and Adipokine Levels in Mice

    Get PDF
    Mammal adipose tissues require mitochondrial activity for proper development and differentiation. The components of the mitochondrial respiratory chain/oxidative phosphorylation system (OXPHOS) are encoded by both mitochondrial and nuclear genomes. The maintenance of mitochondrial DNA (mtDNA) is a key element for a functional mitochondrial oxidative activity in mammalian cells. To ascertain the role of mtDNA levels in adipose tissue, we have analyzed the alterations in white (WAT) and brown (BAT) adipose tissues in thymidine kinase 2 (Tk2) H126N knockin mice, a model of TK2 deficiency-induced mtDNA depletion. We observed respectively severe and moderate mtDNA depletion in TK2-deficient BAT and WAT, showing both tissues moderate hypotrophy and reduced fat accumulation. Electron microscopy revealed altered mitochondrial morphology in brown but not in white adipocytes from TK2-deficient mice. Although significant reduction in mtDNA-encoded transcripts was observed both in WAT and BAT, protein levels from distinct OXPHOS complexes were significantly reduced only in TK2-deficient BAT. Accordingly, the activity of cytochrome c oxidase was significantly lowered only in BAT from TK2-deficient mice. The analysis of transcripts encoding up to fourteen components of specific adipose tissue functions revealed that, in both TK2-deficient WAT and BAT, there was a consistent reduction of thermogenesis related gene expression and a severe reduction in leptin mRNA. Reduced levels of resistin mRNA were found in BAT from TK2-deficient mice. Analysis of serum indicated a dramatic reduction in circulating levels of leptin and resistin. In summary, our present study establishes that mtDNA depletion leads to a moderate impairment in mitochondrial respiratory function, especially in BAT, causes substantial alterations in WAT and BAT development, and has a profound impact in the endocrine properties of adipose tissues

    Diagnostic criteria for diabetes revisited: making use of combined criteria

    Get PDF
    BACKGROUND: Existing cut-offs for fasting plasma glucose (FPG) and post-load glucose (2hPG) criteria are not equivalent in the diagnosis of diabetes and glucose intolerance. Adjusting cut-offs of single measurements have not helped so we undertook this project to see if they could be complementary. METHODS: We performed oral glucose tolerance tests and mean levels of hemoglobin A1c (HbA1c) measurements on 43 patients referred to a diabetes clinic for possible diabetes. Results of single and combined use of the FPG and 2hPG criteria were evaluated against the levels of HbA1c and results re-interpreted in the light of existing reports in the literature. RESULTS: Our results confirm that the FPG and the 2hPG, being specific and sensitive respectively for the presence of glucose intolerance or diabetes, are not equivalent. They are shown to be indeed complementary and a re-definition of diagnostic criteria based on their combined use is proposed. CONCLUSIONS: We conclude that altering single measurement cut-offs for the diagnosis of diabetes and altered glucose tolerance will not result in better outcomes. We present the case for a combined criteria in the diagnosis and definition of diabetes with a FPG≥7 mmol/L AND 2-hour glucose ≥7.8 mmol/L being used to define diabetes while a FPG<7 mmol/L AND 2-hour glucose <7.8 mmol/L being used to define normality. Discordant values will define impaired glucose tolerance (IGT). This proposal requires prospective evaluation in a large cohort

    Monogenic diabetes in children and young adults: Challenges for researcher, clinician and patient

    Get PDF
    Monogenic diabetes results from one or more mutations in a single gene which might hence be rare but has great impact leading to diabetes at a very young age. It has resulted in great challenges for researchers elucidating the aetiology of diabetes and related features in other organ systems, for clinicians specifying a diagnosis that leads to improved genetic counselling, predicting of clinical course and changes in treatment, and for patients to altered treatment that has lead to coming off insulin and injections with no alternative (Glucokinase mutations), insulin injections being replaced by tablets (e.g. low dose in HNFα or high dose in potassium channel defects -Kir6.2 and SUR1) or with tablets in addition to insulin (e.g. metformin in insulin resistant syndromes). Genetic testing requires guidance to test for what gene especially given limited resources. Monogenic diabetes should be considered in any diabetic patient who has features inconsistent with their current diagnosis (unspecified neonatal diabetes, type 1 or type 2 diabetes) and clinical features of a specific subtype of monogenic diabetes (neonatal diabetes, familial diabetes, mild hyperglycaemia, syndromes). Guidance is given by clinical and physiological features in patient and family and the likelihood of the proposed mutation altering clinical care. In this article, I aimed to provide insight in the genes and mutations involved in insulin synthesis, secretion, and resistance, and to provide guidance for genetic testing by showing the clinical and physiological features and tests for each specified diagnosis as well as the opportunities for treatment

    General aspects of muscle glucose uptake

    Full text link
    corecore