7,397 research outputs found

    Wiener-Hopf solution for impenetrable wedges at skew incidence

    Get PDF
    A new Wiener-Hopf approach for the solution of impenetrable wedges at skew incidence is presented. Mathematical aspects are described in a unified and consistent theory for angular region problems. Solutions are obtained using analytical and numerical-analytical approaches. Several numerical tests from the scientific literature validate the new technique, and new solutions for anisotropic surface impedance wedges are solved at skew incidence. The solutions are presented considering the geometrical and uniform theory of diffraction coefficients, total fields, and possible surface wave contribution

    A Converse Hawking-Unruh Effect and dS^2/CFT Correspondance

    Get PDF
    Given a local quantum field theory net A on the de Sitter spacetime dS^d, where geodesic observers are thermalized at Gibbons-Hawking temperature, we look for observers that feel to be in a ground state, i.e. particle evolutions with positive generator, providing a sort of converse to the Hawking-Unruh effect. Such positive energy evolutions always exist as noncommutative flows, but have only a partial geometric meaning, yet they map localized observables into localized observables. We characterize the local conformal nets on dS^d. Only in this case our positive energy evolutions have a complete geometrical meaning. We show that each net has a unique maximal expected conformal subnet, where our evolutions are thus geometrical. In the two-dimensional case, we construct a holographic one-to-one correspondence between local nets A on dS^2 and local conformal non-isotonic families (pseudonets) B on S^1. The pseudonet B gives rise to two local conformal nets B(+/-) on S^1, that correspond to the H(+/-)-horizon components of A, and to the chiral components of the maximal conformal subnet of A. In particular, A is holographically reconstructed by a single horizon component, namely the pseudonet is a net, iff the translations on H(+/-) have positive energy and the translations on H(-/+) are trivial. This is the case iff the one-parameter unitary group implementing rotations on dS^2 has positive/negative generator.Comment: The title has changed. 38 pages, figures. To appear on Annales H. Poincare

    Dimensions and singular traces for spectral triples, with applications to fractals

    Get PDF
    Given a spectral triple (A,D,H), the functionals on A of the form a -> tau_omega(a|D|^(-t)) are studied, where tau_omega is a singular trace, and omega is a generalised limit. When tau_omega is the Dixmier trace, the unique exponent d giving rise possibly to a non-trivial functional is called Hausdorff dimension, and the corresponding functional the (d-dimensional) Hausdorff functional. It is shown that the Hausdorff dimension d coincides with the abscissa of convergence of the zeta function of |D|^(-1), and that the set of t's for which there exists a singular trace tau_omega giving rise to a non-trivial functional is an interval containing d. Moreover, the endpoints of such traceability interval have a dimensional interpretation. The corresponding functionals are called Hausdorff-Besicovitch functionals. These definitions are tested on fractals in R, by computing the mentioned quantities and showing in many cases their correspondence with classical objects. In particular, for self-similar fractals the traceability interval consists only of the Hausdorff dimension, and the corresponding Hausdorff-Besicovitch functional gives rise to the Hausdorff measure. More generally, for any limit fractal, the described functionals do not depend on the generalized limit omega.Comment: latex, 36 pages, no figures, to appear on Journ. Funct. Analysi

    Spectral Properties of Wedge Problems

    Get PDF
    This paper presents our recent results on the study of the scattering and diffraction of an incident plane wave by wedge structures. A review about the impenetrable wedge problem at skew incidence and about the penetrable wedge at normal incidence is discussed. In particular we focus the attention on the spectral properties of the solution in the angular domain. These studies seem to provide a new tool to enhance the fast computation of the solution in terms of fields via a quasi-heuristic approac

    Novikov-Shubin invariants and asymptotic dimensions for open manifolds

    Full text link
    The Novikov-Shubin numbers are defined for open manifolds with bounded geometry, the Gamma-trace of Atiyah being replaced by a semicontinuous semifinite trace on the C*-algebra of almost local operators. It is proved that they are invariant under quasi-isometries and, making use of the theory of singular traces for C*-algebras developed in math/9802015, they are interpreted as asymptotic dimensions since, in analogy with what happens in Connes' noncommutative geometry, they indicate which power of the Laplacian gives rise to a singular trace. Therefore, as in geometric measure theory, these numbers furnish the order of infinitesimal giving rise to a non trivial measure. The dimensional interpretation is strenghtened in the case of the 0-th Novikov-Shubin invariant, which is shown to coincide, under suitable geometric conditions, with the asymptotic counterpart of the box dimension of a metric space. Since this asymptotic dimension coincides with the polynomial growth of a discrete group, the previous equality generalises a result by Varopoulos for covering manifolds. This paper subsumes dg-ga/9612015. In particular, in the previous version only the 0th Novikov-Shubin number was considered, while here Novikov-Shubin numbers for all p are defined and studied.Comment: 43 pages, LaTex2

    Generalized Wiener-Hopf Equations for Wedge problems involving arbitrary linear media

    Get PDF
    This paper provides new functional equations in angular regions that turn useful to study wedge problems in presence of arbitrary linear media. The enforcement of the boundary conditions on these equations reduces the wedge problems to Generalized Wiener-Hopf (GWHE) equations that can be approached with standard solution techniques. This procedure is briefly illustrated in this pape
    corecore