7,397 research outputs found
Wiener-Hopf solution for impenetrable wedges at skew incidence
A new Wiener-Hopf approach for the solution of impenetrable wedges at skew incidence is presented. Mathematical aspects are described in a unified and consistent theory for angular region problems. Solutions are obtained using analytical and numerical-analytical approaches. Several numerical tests from the scientific literature validate the new technique, and new solutions for anisotropic surface impedance wedges are solved at skew incidence. The solutions are presented considering the geometrical and uniform theory of diffraction coefficients, total fields, and possible surface wave contribution
A Converse Hawking-Unruh Effect and dS^2/CFT Correspondance
Given a local quantum field theory net A on the de Sitter spacetime dS^d,
where geodesic observers are thermalized at Gibbons-Hawking temperature, we
look for observers that feel to be in a ground state, i.e. particle evolutions
with positive generator, providing a sort of converse to the Hawking-Unruh
effect. Such positive energy evolutions always exist as noncommutative flows,
but have only a partial geometric meaning, yet they map localized observables
into localized observables.
We characterize the local conformal nets on dS^d. Only in this case our
positive energy evolutions have a complete geometrical meaning. We show that
each net has a unique maximal expected conformal subnet, where our evolutions
are thus geometrical.
In the two-dimensional case, we construct a holographic one-to-one
correspondence between local nets A on dS^2 and local conformal non-isotonic
families (pseudonets) B on S^1. The pseudonet B gives rise to two local
conformal nets B(+/-) on S^1, that correspond to the H(+/-)-horizon components
of A, and to the chiral components of the maximal conformal subnet of A. In
particular, A is holographically reconstructed by a single horizon component,
namely the pseudonet is a net, iff the translations on H(+/-) have positive
energy and the translations on H(-/+) are trivial. This is the case iff the
one-parameter unitary group implementing rotations on dS^2 has
positive/negative generator.Comment: The title has changed. 38 pages, figures. To appear on Annales H.
Poincare
Dimensions and singular traces for spectral triples, with applications to fractals
Given a spectral triple (A,D,H), the functionals on A of the form a ->
tau_omega(a|D|^(-t)) are studied, where tau_omega is a singular trace, and
omega is a generalised limit. When tau_omega is the Dixmier trace, the unique
exponent d giving rise possibly to a non-trivial functional is called Hausdorff
dimension, and the corresponding functional the (d-dimensional) Hausdorff
functional.
It is shown that the Hausdorff dimension d coincides with the abscissa of
convergence of the zeta function of |D|^(-1), and that the set of t's for which
there exists a singular trace tau_omega giving rise to a non-trivial functional
is an interval containing d. Moreover, the endpoints of such traceability
interval have a dimensional interpretation. The corresponding functionals are
called Hausdorff-Besicovitch functionals.
These definitions are tested on fractals in R, by computing the mentioned
quantities and showing in many cases their correspondence with classical
objects. In particular, for self-similar fractals the traceability interval
consists only of the Hausdorff dimension, and the corresponding
Hausdorff-Besicovitch functional gives rise to the Hausdorff measure. More
generally, for any limit fractal, the described functionals do not depend on
the generalized limit omega.Comment: latex, 36 pages, no figures, to appear on Journ. Funct. Analysi
Spectral Properties of Wedge Problems
This paper presents our recent results on the study of the scattering and diffraction of an incident plane wave by wedge structures. A review about the impenetrable wedge problem at skew incidence and about the penetrable wedge at normal incidence is discussed. In particular we focus the attention on the spectral properties of the solution in the angular domain. These studies seem to provide a new tool to enhance the fast computation of the solution in terms of fields via a quasi-heuristic approac
Novikov-Shubin invariants and asymptotic dimensions for open manifolds
The Novikov-Shubin numbers are defined for open manifolds with bounded
geometry, the Gamma-trace of Atiyah being replaced by a semicontinuous
semifinite trace on the C*-algebra of almost local operators. It is proved that
they are invariant under quasi-isometries and, making use of the theory of
singular traces for C*-algebras developed in math/9802015, they are interpreted
as asymptotic dimensions since, in analogy with what happens in Connes'
noncommutative geometry, they indicate which power of the Laplacian gives rise
to a singular trace. Therefore, as in geometric measure theory, these numbers
furnish the order of infinitesimal giving rise to a non trivial measure. The
dimensional interpretation is strenghtened in the case of the 0-th
Novikov-Shubin invariant, which is shown to coincide, under suitable geometric
conditions, with the asymptotic counterpart of the box dimension of a metric
space. Since this asymptotic dimension coincides with the polynomial growth of
a discrete group, the previous equality generalises a result by Varopoulos for
covering manifolds. This paper subsumes dg-ga/9612015. In particular, in the
previous version only the 0th Novikov-Shubin number was considered, while here
Novikov-Shubin numbers for all p are defined and studied.Comment: 43 pages, LaTex2
Generalized Wiener-Hopf Equations for Wedge problems involving arbitrary linear media
This paper provides new functional equations in angular regions that turn useful to study wedge problems in presence of arbitrary linear media. The enforcement of the boundary conditions on these equations reduces the wedge problems to Generalized Wiener-Hopf (GWHE) equations that can be approached with standard solution techniques. This procedure is briefly illustrated in this pape
- …
