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Introduction 
 

Recently the diffraction by arbitrary impenetrable wedges has been reduced to the 
factorization of matrices of order four [1]. This paper provides an efficient and 
general factorization technique that is based on the solution of a Fredholm integral 
equation of second kind.  
 

Wiener- Hopf solution of the problem 
 

Figure 1 illustrates the problem of the diffraction by a plane wave at skew 
incidence on an impenetrable wedge immersed in a medium with permittivity ε 
and permeability  µ.  

 
Figure 1: Geometry of the problem 

 
The incident field is constituted by a plane wave having the following 
longitudinal components: 
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where β and ϕ0 are the zenithal and azimuthal angle of the direction of the plane 
wave in̂  and εµω=k , α0 = k cos β, τ0 = k sin β. 
The tangential fields are related on the boundaries of the wedge ϕ = +Φ (a-face) 
and ϕ = -Φ (b-face) through the Leontovich conditions: 
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/oZ µ ε=  is the free space impedance.  
The Wiener-Hopf formulation [1,4] of this problem yields the solution: 
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For the problem at hand the constants , ηo oT  assume the following expressions: 
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and the matrix ( )G η+  is the plus factorized matrix of the matrix kernel 
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bd , b
z∆ , 31 32 33 34 41 42, 43 44, , , , , ,g g g g g g g g  assume respectively the same expression 

of ad , a
z∆ , 11 12 13 14 21 22, 23 24, , , , , ,g g g g g g g g− − − − except for the substitution of the 

superscript a with the superscript b. 
The functions , and  m nξ  depends on η  and are defined by: 
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In several important cases the matrix ( )G η  can be factorized in closed form [2]. 
For instance, this property is verified for the whole class of problems that have 
been solved with the Malyuzhinets-Sommerfeld technique.  
 

Fredholm factorization of the matrix kernel ( )G η  
 
By using the technique introduced in [3] the factorized matrix  ( )G η+  can be 
expressed by: 
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where pη  is an arbitrary point with negative imaginary part and the functions 
( )η+iX , }4,3,2,1{ =i  satisfy the following Fredholm integral equation: 

         
( ) ( ) ( )1( ) ( ) . , Im[ ] 0

2
i i

i p
p

G x G X x RG X dx
j x

η
η η η

π η η η
∞ +

+ −∞

 − + = <
− −∫  (11) 

with the vector constant iR  given by the canonical basis for the 4D space. 
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−∫ ∫  is bounded [3], (11) is a Fredholm equation of 

second kind where it is applicable the well-known in literature powerful solution 
technique. 
We experienced [4] that the convergence of approximate solutions considerably 
increases when we solve the integral equation in the t plane defined by the 

mapping ( ) cos( )
2ot j t πη η τ= = − − . 

 
Numerical validation 

 
To ascertain the correctness of our new methodology we have chosen a well 
known in literature test case to compare our solution with alternative method [5]: 
the bistatic far field amplitude evaluation for skew incidence on an impedance 
half plane. Figure 2 reports the GTD Diffraction Coefficient for Ez component 
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( ( ) ( ) ( )E E ED s sϕ ϕ π ϕ π= − − + , where ( )Es w  is the Sommerfeld function) for the 
test case with the following problem parameters: k=1, the incident field ϕ0=5π/6, 

/ 3β π= , Ezo=1, Hzo=0, the aperture angle Φ=π, the integration parameters A=5, 
h=1 for the discretization of equation (11) after the transformation in the t plane. 
Peaks of the GTD Diffraction Coefficients are for ϕ= ϕ0 −π (incident field) and 
for ϕ= 2Φ− ϕ0 −π (reflected field). 

 
Figure 2: Amplitude of the GTD Diffraction Coefficient (dB) 

 
Several other applications of this technique to wedge problems have been 
reported in [6]. New examples and convergence tests concerning with new 
canonical wedge problems will be illustrated in the oral presentation of the paper.  
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