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Introduction

Recently the diffraction by arbitrary impenetrable wedges has been reduced to the
factorization of matrices of order four [1]. This paper provides an efficient and
general factorization technique that is based on the solution of a Fredholm integral
equation of second kind.

Wiener- Hopf solution of the problem

Figure 1 illustrates the problem of the diffraction by a plane wave at skew
incidence on an impenetrable wedge immersed in a medium with permittivity €
and permeability .

Keller's cone

Figure 1: Geometry of the problem

The incident field is constituted by a plane wave having the following
longitudinal components:

El = E /%P 9=0,) ,=i%?= H! = H /%rPoso9=0,) 77> (1)
where fand ¢, are the zenithal and azimuthal angle of the direction of the plane
wave n, and k=w\Jue, a,=kcos B, t,=k sin .

The tangential fields are related on the boundaries of the wedge ¢=+® (a-face)
and ¢ =-® (b-face) through the Leontovich conditions:
Ez(paq)) -7 |:Hp(paq))} Ez(pa_q)) __Z|:Hp(pa_q))} (2)
E,(p.@)| |-H.(p,®)] |E,(p—®)]| '|-H.(pD)
Zlafb Zlaz’b

ab a,b

where the matrices Z,, = ZO[
Zn  Zp

:| depends on the wedge material and
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Z =./ul¢ is the free space impedance.
The Wiener-Hopf formulation [1,4] of this problem yields the solution:

= o == T
X.(i7)=G ()G, (1,)=—= 3)
n-n,
where:
V.9 =] E(p.p)e™dp,  1,(1.9)= | H.(p.9)e" dp )
Vo 0)= [ E,(p.0)e" dp, 1,.(n.9)=[ H,(p,p)e""dp (5)
X, =V...0) V,.1.0) Z,L.0.0) Z1, 1.0 (6)

and n=n(7)=-r, cos[g[arccos[—z]] .
V4

o

For the problem at hand the constants 7., 77, assume the following expressions:
JE,
r .o, cosQ E +kZ sing H,
7 S g @ J z
@ sin o, JZ,H,

; o, Z cosp H, —ksingE,

T

o

and 7, =-7 cos£¢
o 0 ® 0

and the matrix (_}+ (77) is the plus factorized matrix of the matrix kernel

S 8n 8 8u
d* d° d* d°
8 &»n 8n 8u
- - = - da da da da
G =G_(mMG, (1), G(n) = (7
&1 8n 8u 8u
d* d* d° d°
Su 8o 8u Su
d* d* d* d°

where:
2 g2 2 2 2
gy =—knzio,n-mno,—k 7]§+kmzf20{0§—k252§‘[0 &, =—knzjT,—-ma,t, ,
2 g2 2
gl3 = knaon_mnzlazao _k nzfzg_kmaog-i_zgznao To s

_ 2 a 2 a 4
8= knz-o —Zpm aoz-o + ZZZTO ’

2 _ 2 4

g, =knn-mée z' +(ne, +kz5,6)t; , g, =knz' 7, +7,,
2 2 2 2 _ 2 4

g23 =m Zlalaon + k n Zlalé:_ Z;laonro + ké:ro 4 g24 - lealao To - Z;IT

o0

2.2 2 2 2 a a 2 a 4 a _ _a_a a _a
d*=k"n"z/|+m" z{,0 +kn(1+ A*)t —m(z{, + z;,)o, T+ 25,7, ,A? = 2,25, — z{, 2},
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b b . .
d’, A7, 23158325833 8345 8a1> 842.843- 844 ASSUME reSpectively the same expression

of d*, AL, g1,81>—813>—814>&21>&n. — 23— €XcePt for the substitution of the

superscript a with the superscript b.
The functions £,mand n depends on 77 and are defined by:

&= (1) =, sin[ > [arccos[~ 1]
V4 T

m=m() =1, cos[g[arccos[—jH(D] (8)
V4 T,

n=n(])=1, sin[9 [arccos[—i] + @]
V4 T

o

In several important cases the matrix G(77) can be factorized in closed form [2].

For instance, this property is verified for the whole class of problems that have
been solved with the Malyuzhinets-Sommerfeld technique.

Fredholm factorization of the matrix kernel (_?(77 )

By using the technique introduced in [3] the factorized matrix (_}+ (77) can be
expressed by:
_ 1 _ _ _ -
G. () = ———|X,, (7). X, (1), X, (7). X, ()| (10)
n-n,
where 77, is an arbitrary point with negative imaginary part and the functions

X, (7),{i =1,2,3,4} satisfy the following Fredholm integral equation:

_ -| G(x)-G@) | X,
GX,.(+ 5 [C0-CDX0 R e a
Tji= x=n n-n,

with the vector constant R, given by the canonical basis for the 4D space.

Since L.L G(x) G(n)

second kind where it is applicable the well-known in literature powerful solution
technique.

We experienced [4] that the convergence of approximate solutions considerably
increases when we solve the integral equation in the ¢ plane defined by the

dxdn is bounded [3], (11) is a Fredholm equation of

mapping 7 =77(1) = ~2, cos(j = 7).

Numerical validation

To ascertain the correctness of our new methodology we have chosen a well
known in literature test case to compare our solution with alternative method [5]:
the bistatic far field amplitude evaluation for skew incidence on an impedance
half plane. Figure 2 reports the GTD Diffraction Coefficient for Ez component
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(D (p)=s.(¢p—7)—s,(¢p+7), where s,(w) is the Sommerfeld function) for the
test case with the following problem parameters: k=1, the incident field gy=5m/6,
B =m/3, Ezo=1, Hz0=0, the aperture angle ®=r, the integration parameters A=5,
h=1 for the discretization of equation (11) after the transformation in the ¢ plane.
Peaks of the GTD Diffraction Coefficients are for ¢= ¢ —n (incident field) and
fo;0 ¢=20— ¢ —x (reflected field).

— PEC
o za=0.25, zb=4
o za=0.25,zb=0.25
4 za=10,zb=0
* anisotropic

anisotropic impedances
zall = 2-j: za2l =-0.5;
zal2 = 1+2j; za22 = 1-j;
zbll =0.5; zb12 = 0;
zb21=0; zb22 =2.6;

-7 -n/2 -n/6 0 =n/6 n/2 o
Figure 2: Amplitude of the GTD Diffraction Coefficient (dB)

Several other applications of this technique to wedge problems have been
reported in [6]. New examples and convergence tests concerning with new
canonical wedge problems will be illustrated in the oral presentation of the paper.
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