606 research outputs found

    What determines the spreading of a wave packet?

    Full text link
    The multifractal dimensions D2^mu and D2^psi of the energy spectrum and eigenfunctions, resp., are shown to determine the asymptotic scaling of the width of a spreading wave packet. For systems where the shape of the wave packet is preserved the k-th moment increases as t^(k*beta) with beta=D2^mu/D2^psi, while in general t^(k*beta) is an optimal lower bound. Furthermore, we show that in d dimensions asymptotically in time the center of any wave packet decreases spatially as a power law with exponent D_2^psi - d and present numerical support for these results.Comment: Physical Review Letters to appear, 4 pages postscript with figure

    Spectrum and diffusion for a class of tight-binding models on hypercubes

    Full text link
    We propose a class of exactly solvable anisotropic tight-binding models on an infinite-dimensional hypercube. The energy spectrum is analytically computed and is shown to be fractal and/or absolutely continuous according to the value hopping parameters. In both cases, the spectral and diffusion exponents are derived. The main result is that, even if the spectrum is absolutely continuous, the diffusion exponent for the wave packet may be anything between 0 and 1 depending upon the class of models.Comment: 5 pages Late

    Quantum Accelerator Modes near Higher-Order Resonances

    Get PDF
    Quantum Accelerator Modes have been experimentally observed, and theoretically explained, in the dynamics of kicked cold atoms in the presence of gravity, when the kicking period is close to a half-integer multiple of the Talbot time. We generalize the theory to the case when the kicking period is sufficiently close to any rational multiple of the Talbot time, and thus predict new rich families of experimentally observable Quantum Accelerator Modes.Comment: Inaccurate reference [12] has been amende

    Arnol'd Tongues and Quantum Accelerator Modes

    Full text link
    The stable periodic orbits of an area-preserving map on the 2-torus, which is formally a variant of the Standard Map, have been shown to explain the quantum accelerator modes that were discovered in experiments with laser-cooled atoms. We show that their parametric dependence exhibits Arnol'd-like tongues and perform a perturbative analysis of such structures. We thus explain the arithmetical organisation of the accelerator modes and discuss experimental implications thereof.Comment: 20 pages, 6 encapsulated postscript figure

    Stable Quantum Resonances in Atom Optics

    Full text link
    A theory for stabilization of quantum resonances by a mechanism similar to one leading to classical resonances in nonlinear systems is presented. It explains recent surprising experimental results, obtained for cold Cesium atoms when driven in the presence of gravity, and leads to further predictions. The theory makes use of invariance properties of the system, that are similar to those of solids, allowing for separation into independent kicked rotor problems. The analysis relies on a fictitious classical limit where the small parameter is {\em not} Planck's constant, but rather the detuning from the frequency that is resonant in absence of gravity.Comment: 5 pages, 3 figure

    Double butterfly spectrum for two interacting particles in the Harper model

    Full text link
    We study the effect of interparticle interaction UU on the spectrum of the Harper model and show that it leads to a pure-point component arising from the multifractal spectrum of non interacting problem. Our numerical studies allow to understand the global structure of the spectrum. Analytical approach developed permits to understand the origin of localized states in the limit of strong interaction UU and fine spectral structure for small UU.Comment: revtex, 4 pages, 5 figure

    Can quantum fractal fluctuations be observed in an atom-optics kicked rotor experiment?

    Full text link
    We investigate the parametric fluctuations in the quantum survival probability of an open version of the delta-kicked rotor model in the deep quantum regime. Spectral arguments [Guarneri I and Terraneo M 2001 Phys. Rev. E vol. 65 015203(R)] predict the existence of parametric fractal fluctuations owing to the strong dynamical localisation of the eigenstates of the kicked rotor. We discuss the possibility of observing such dynamically-induced fractality in the quantum survival probability as a function of the kicking period for the atom-optics realisation of the kicked rotor. The influence of the atoms' initial momentum distribution is studied as well as the dependence of the expected fractal dimension on finite-size effects of the experiment, such as finite detection windows and short measurement times. Our results show that clear signatures of fractality could be observed in experiments with cold atoms subjected to periodically flashed optical lattices, which offer an excellent control on interaction times and the initial atomic ensemble.Comment: 18 pp, 7 figs., 1 tabl

    Quantum Fractal Fluctuations

    Full text link
    We numerically analyse quantum survival probability fluctuations in an open, classically chaotic system. In a quasi-classical regime, and in the presence of classical mixed phase space, such fluctuations are believed to exhibit a fractal pattern, on the grounds of semiclassical arguments. In contrast, we work in a classical regime of complete chaoticity, and in a deep quantum regime of strong localization. We provide evidence that fluctuations are still fractal, due to the slow, purely quantum algebraic decay in time produced by dynamical localization. Such findings considerably enlarge the scope of the existing theory.Comment: revtex, 4 pages, 5 figure

    On the spacing distribution of the Riemann zeros: corrections to the asymptotic result

    Full text link
    It has been conjectured that the statistical properties of zeros of the Riemann zeta function near z = 1/2 + \ui E tend, as EE \to \infty, to the distribution of eigenvalues of large random matrices from the Unitary Ensemble. At finite EE numerical results show that the nearest-neighbour spacing distribution presents deviations with respect to the conjectured asymptotic form. We give here arguments indicating that to leading order these deviations are the same as those of unitary random matrices of finite dimension Neff=log(E/2π)/12ΛN_{\rm eff}=\log(E/2\pi)/\sqrt{12 \Lambda}, where Λ=1.57314...\Lambda=1.57314 ... is a well defined constant.Comment: 9 pages, 3 figure
    corecore