A theory for stabilization of quantum resonances by a mechanism similar to
one leading to classical resonances in nonlinear systems is presented. It
explains recent surprising experimental results, obtained for cold Cesium atoms
when driven in the presence of gravity, and leads to further predictions. The
theory makes use of invariance properties of the system, that are similar to
those of solids, allowing for separation into independent kicked rotor
problems. The analysis relies on a fictitious classical limit where the small
parameter is {\em not} Planck's constant, but rather the detuning from the
frequency that is resonant in absence of gravity.Comment: 5 pages, 3 figure