837 research outputs found

    Photoredox Allylation Reactions Mediated by Bismuth in Aqueous Conditions

    Get PDF
    Organometallic allylic reagents are widely used in the construction of C−C bonds by Barbier-type reactions. In this communication, we have described a photoredox Barbier allylation of aldehydes mediated by bismuth, in absence of other metals as co-reductants. Mild reaction conditions, tolerance of oxygen, and use of aqueous solvent make this photoredox methodology attractive for green and sustainable synthesis of homoallylic alcohols

    Fluorescence Spectroscopy for the Diagnosis of Endometritis in the Mare

    Get PDF
    By exploiting the PMN property to produce high quantities of oxygen peroxide to neutralize pathogens, the oxygen peroxide content of uterine cells was measured to diagnose endometritis. After preliminary in vitro studies in which endometrial cells from slaughtered mares were mixed with leukocytes from peripheral blood, endometrial samples were collected by uterine flushing from mares before insemination. Staining endometrial cells with H2DCF-DA was combined with hydroethidine to normalize the fluorescence intensity with the cellular content of the sample. Stained cell smears were assumed as the gold standard of endometritis, and based on this assay, the samples were considered positive (C+) and negative (C-) for endometritis. The amount and the turbidity of fluid recovered by uterine flushing were significantly (p < 0.01) higher in C+ than in C-. Moreover, the oxygen peroxide content of the endometrial cells was significantly higher in the C+ than in the C- group (6.31 ± 1.92 vs. 3.12 ± 1.26, p = 0.001). Using the value of 4.4 as the cutoff level of this fluorescence cytology assay, it was found that only one C- sample exceeded the cutoff level (false positives = 7.7%) while three C+ samples showed values below the cutoff level (false negative = 11.5%)

    Biomimetic Hierarchically Arranged Nanofibrous Structures Resembling the Architecture and the Passive Mechanical Properties of Skeletal Muscles: A Step Forward Toward Artificial Muscle

    Get PDF
    Skeletal muscles are considered to date the best existing actuator in nature thanks to their hierarchical multiscale fibrous structure capable to enhance their strength and contractile performances. In recent years, driven by the growing of the soft robotics and tissue-engineering research field, many biomimetic soft actuators and scaffolds were designed by taking inspiration from the biological skeletal muscle. In this work we used the electrospinning technique to develop a hierarchically arranged nanofibrous structure resembling the morphology and passive biomechanical properties of skeletal muscles. To mimic the passive properties of muscle, a low-modulus polyurethane was used. Several electrospun structures (mats, bundles, and a muscle-like assembly) were produced with different internal 3D arrangements of the nanofibers. A thermal characterization through thermogravimetric and differential scanning calorimetry analysis investigated the physico-chemical properties of the material. The multiscale morphological similarities with the biological counterpart were verified by means of scanning electron microscopy investigation. The tensile tests on the different electrospun samples revealed that the muscle-like assembly presented slightly higher strength and stiffness compared to the skeletal muscle ones. Moreover, mathematical models of the mechanical behavior of the nanofibrous structures were successfully developed, allowing to better investigate the relationships between structure and mechanics of the samples. The promising results suggest the suitability of this hierarchical electrospun nanofibrous structure for applications in regenerative medicine and, if combined with active materials, in soft actuators for robotic

    A Catalytic Reactor for the Organocatalyzed Enantioselective Continuous Flow Alkylation of Aldehydes

    Get PDF
    The use of immobilized metal-free catalysts offers the unique possibility to develop sustainable processes in flow mode. The challenging intermolecular organocatalyzed enantioselective alkylation of aldehydes was performed for the first time under continuous flow conditions. By using a packed-bed reactor filled with readily available supported enantiopure imidazolidinone, different aldehydes were treated with three distinct cationic electrophiles. In the organocatalyzed α-alkylation of aldehydes with 1,3-benzodithiolylium tetrafluoroborate, excellent enantioselectivities, in some cases even better than those obtained in the flask process (up to 95 % ee at 25 °C), and high productivity (more than 3800 h−1) were obtained, which thus shows that a catalytic reactor may continuously produce enantiomerically enriched compounds. Treatment of the alkylated products with Raney-nickel furnished enantiomerically enriched α-methyl derivatives, key intermediates for active pharmaceutical ingredients and natural products

    Deterministic and stochastic chaos characterize laboratory earthquakes

    Get PDF
    We analyze frictional motion for a laboratory fault as it passes through the stability transition from stable sliding to unstable motion. We study frictional stick-slip events, which are the lab equivalent of earthquakes, via dynamical system tools in order to retrieve information on the underlying dynamics and to assess whether there are dynamical changes associated with the transition from stable to unstable motion. We find that the seismic cycle exhibits characteristics of a low-dimensional system with average dimension similar to that of natural slow earthquakes (<5). We also investigate local properties of the attractor and find maximum instantaneous dimension ≳10, indicating that some regions of the phase space require a high number of degrees of freedom (dofs). Our analysis does not preclude deterministic chaos, but the lab seismic cycle is best explained by a random attractor based on rate- and state-dependent friction whose dynamics is stochastically perturbed. We find that minimal variations of 0.05% of the shear and normal stresses applied to the experimental fault influence the large-scale dynamics and the recurrence time of labquakes. While complicated motion including period doubling is observed near the stability transition, even in the fully unstable regime we do not observe truly periodic behavior. Friction's nonlinear nature amplifies small scale perturbations, reducing the predictability of the otherwise periodic macroscopic dynamics. As applied to tectonic faults, our results imply that even small stress field fluctuations (≲150 kPa) can induce coefficient of variations in earthquake repeat time of a few percent. Moreover, these perturbations can drive an otherwise fast-slipping fault, close to the critical stability condition, into a mixed behavior involving slow and fast ruptures

    The pulsed electron deposition technique for biomedical applications: A review

    Get PDF
    The "pulsed electron deposition" (PED) technique, in which a solid target material is ablated by a fast, high-energy electron beam, was initially developed two decades ago for the deposition of thin films of metal oxides for photovoltaics, spintronics, memories, and superconductivity, and dielectric polymer layers. Recently, PED has been proposed for use in the biomedical field for the fabrication of hard and soft coatings. The first biomedical application was the deposition of low wear zirconium oxide coatings on the bearing components in total joint replacement. Since then, several works have reported the manufacturing and characterization of coatings of hydroxyapatite, calcium phosphate substituted (CaP), biogenic CaP, bioglass, and antibacterial coatings on both hard (metallic or ceramic) and soft (plastic or elastomeric) substrates. Due to the growing interest in PED, the current maturity of the technology and the low cost compared to other commonly used physical vapor deposition techniques, the purpose of this work was to review the principles of operation, the main applications, and the future perspectives of PED technology in medicine

    Cp2TiCl2-Catalyzed Photoredox Allylation of Aldehydes with Visible Light

    Get PDF
    A Barbier-type Cp2TiCl2-mediated (10 mol %) photoredox allylation of aldehydes under irradiation with visible light (blue light-emitting diodes (LEDs), 450 nm) and in the presence of an organic dye (3DPAFIPN, 5 mol %) with allylbromides is described

    GR 290 (Romano's Star): 2. Light history and evolutionary state

    Get PDF
    We have built the historical light curve of the luminous variable GR 290 back to 1901, from old observations of the star found in several archival plates of M 33. These old recordings together with published and new data show that for at least half a century the star was in a low luminosity state, with B ~18. After 1960, five large variability cycles of visual luminosity were recorded. The amplitude of the oscillations was seen increasing towards the 1992-1994 maximum, then decreasing during the last maxima. The recent light curve indicates that the photometric variations have been quite similar in all the bands, and that the B-V color index has been constant within +/-0.1 m despite the 1.5m change of the visual luminosity. The spectrum of GR 290 at the large maximum of 1992-94, was equivalent to late-B type, while, during 2002-2014, it has varied between WN10h-11h near the visual maxima to WN8h-9h at the luminosity minima. We have detected, during this same period, a clear anti-correlation between the visual luminosity, the strength of the HeII 4686 A emission line, the strength of the 4600-4700 A lines blend and the spectral type. From a model analysis of the spectra collected during the whole 2002-2014 period we find that the Rosseland radius R_{2/3}, changed between the minimum and maximum luminosity phases by a factor of 3, while T_eff varied between about 33,000 K and 23,000 K. The bolometric luminosity of the star was not constant, but increased by a factor of ~1.5 between minimum and maximum luminosity, in phase with the apparent luminosity variations. In the light of current evolutionary models of very massive stars, we find that GR 290 has evolved from a ~60 M_Sun progenitor star and should have an age of about 4 million years. We argue that it has left the LBV stage and is moving to a Wolf-Rayet stage of late nitrogen spectral type.Comment: Accepted on The Astronomical Journal, 10 figures. Replaced because the previous uploaded file was that without the final small corrections requested by the refere

    M31 Pixel Lensing PLAN Campaign: MACHO Lensing and Self Lensing Signals

    Get PDF
    We present the final analysis of the observational campaign carried out by the PLAN (Pixel Lensing Andromeda) collaboration to detect a dark matter signal in form of MACHOs through the microlensing effect. The campaign consists of about 1 month/year observations carried out during 4 years (2007-2010) at the 1.5m Cassini telescope in Loiano ("Astronomical Observatory of BOLOGNA", OAB) plus 10 days of data taken in 2010 at the 2m Himalayan Chandra Telescope (HCT) monitoring the central part of M31 (two fields of about 13'x12.6'). We establish a fully automated pipeline for the search and the characterization of microlensing flux variations: as a result we detect 3 microlensing candidates. We evaluate the expected signal through a full Monte Carlo simulation of the experiment completed by an analysis of the detection efficiency of our pipeline. We consider both "self lensing" and "MACHO lensing" lens populations, given by M31 stars and dark matter halo MACHOs, in the M31 and the Milky Way (MW), respectively. The total number of events is compatible with the expected self-lensing rate. Specifically, we evaluate an expected signal of about 2 self-lensing events. As for MACHO lensing, for full 0.5 (0.01) solar mass MACHO halos, our prediction is for about 4 (7) events. The comparatively small number of expected MACHO versus self lensing events, together with the small number statistics at disposal, do not enable us to put strong constraints on that population. Rather, the hypothesis, suggested by a previous analysis, on the MACHO nature of OAB-07-N2, one of the microlensing candidates, translates into a sizeable lower limit for the halo mass fraction in form of the would be MACHO population, f, of about 15% for 0.5 solar mass MACHOs.Comment: ApJ accepted, 13 pages, 5 figures, 2 table
    corecore