170 research outputs found
Generic master equations for quasi-normal frequencies
Generic master equations governing the highly-damped quasi-normal frequencies
[QNFs] of one-horizon, two-horizon, and even three-horizon spacetimes can be
obtained through either semi-analytic or monodromy techniques. While many
technical details differ, both between the semi-analytic and monodromy
approaches, and quite often among various authors seeking to apply the
monodromy technique, there is nevertheless widespread agreement regarding the
the general form of the QNF master equations. Within this class of generic
master equations we can establish some rather general results, relating the
existence of "families" of QNFs of the form omega_{a,n} = (offset)_a + i n
(gap) to the question of whether or not certain ratios of parameters are
rational or irrational.Comment: 23 pages; V2: Minor additions, typos fixed. Matches published versio
Conformally rescaled spacetimes and Hawking radiation
We study various derivations of Hawking radiation in conformally rescaled
metrics. We focus on two important properties, the location of the horizon
under a conformal transformation and its associated temperature. We find that
the production of Hawking radiation cannot be associated in all cases to the
trapping horizon because its location is not invariant under a conformal
transformation. We also find evidence that the temperature of the Hawking
radiation should transform simply under a conformal transformation, being
invariant for asymptotic observers in the limit that the conformal
transformation factor is unity at their location.Comment: 22 pages, version submitted to journa
Semi-analytic results for quasi-normal frequencies
The last decade has seen considerable interest in the quasi-normal
frequencies [QNFs] of black holes (and even wormholes), both asymptotically
flat and with cosmological horizons. There is wide agreement that the QNFs are
often of the form omega_n = (offset) + i n (gap), though some authors have
encountered situations where this behaviour seems to fail. To get a better
understanding of the general situation we consider a semi-analytic model based
on a piecewise Eckart (Poeschl-Teller) potential, allowing for different
heights and different rates of exponential falloff in the two asymptotic
directions. This model is sufficiently general to capture and display key
features of the black hole QNFs while simultaneously being analytically
tractable, at least for asymptotically large imaginary parts of the QNFs. We
shall derive an appropriate "quantization condition" for the asymptotic QNFs,
and extract as much analytic information as possible. In particular, we shall
explicitly verify that the (offset)+ i n (gap) behaviour is common but not
universal, with this behaviour failing unless the ratio of rates of exponential
falloff on the two sides of the potential is a rational number. (This is
"common but not universal" in the sense that the rational numbers are dense in
the reals.) We argue that this behaviour is likely to persist for black holes
with cosmological horizons.Comment: V1: 28 pages, no figures. V2: 3 references added, no physics changes.
V3: 29 pages, 9 references added, no physics changes; V4: reformatted, now 27
pages. Some clarifications, comparison with results obtained by monodromy
techniques. This version accepted for publication in JHEP. V5: Minor typos
fixed. Compatible with published versio
Probe Branes, Time-dependent Couplings and Thermalization in AdS/CFT
We present holographic descriptions of thermalization in conformal field
theories using probe D-branes in AdS X S space-times. We find that the induced
metrics on Dp-brane worldvolumes which are rotating in an internal sphere
direction have horizons with characteristic Hawking temperatures even if there
is no black hole in the bulk AdS. The AdS/CFT correspondence applied to such
systems indeed reveals thermal properties such as Brownian motions and AC
conductivities in the dual conformal field theories. We also use this framework
to holographically analyze time-dependent systems undergoing a quantum quench,
where parameters in quantum field theories, such as a mass or a coupling
constant, are suddenly changed. We confirm that this leads to thermal behavior
by demonstrating the formation of apparent horizons in the induced metric after
a certain time.Comment: LaTeX, 47 pages, 14 figures; Typos corrected and references added
(v2); minor corrections, references added(v3
Asymptotically Lifshitz wormholes and black holes for Lovelock gravity in vacuum
Static asymptotically Lifshitz wormholes and black holes in vacuum are shown
to exist for a class of Lovelock theories in d=2n+1>7 dimensions, selected by
requiring that all but one of their n maximally symmetric vacua are AdS of
radius l and degenerate. The wormhole geometry is regular everywhere and
connects two Lifshitz spacetimes with a nontrivial geometry at the boundary.
The dynamical exponent z is determined by the quotient of the curvature radii
of the maximally symmetric vacua according to n(z^2-1)+1=(l/L)^2, where L
corresponds to the curvature radius of the nondegenerate vacuum. Light signals
are able to connect both asymptotic regions in finite time, and the
gravitational field pulls towards a fixed surface located at some arbitrary
proper distance to the neck. The asymptotically Lifshitz black hole possesses
the same dynamical exponent and a fixed Hawking temperature given by T=z/(2^z
pi l). Further analytic solutions, including pure Lifshitz spacetimes with a
nontrivial geometry at the spacelike boundary, and wormholes that interpolate
between asymptotically Lifshitz spacetimes with different dynamical exponents
are also found.Comment: 19 pages, 1 figur
A Proposal for a Near Detector Experiment on the Booster Neutrino Beamline: FINeSSE: Fermilab Intense Neutrino Scattering Scintillator Experiment
219 pages219 pagesUnderstanding the quark and gluon substructure of the nucleon has been a prime goal of both nuclear and particle physics for more than thirty years and has led to much of the progress in strong interaction physics. Still the flavor dependence of the nucleon's spin is a significant fundamental question that is not understood. Experiments measuring the spin content of the nucleon have reported conflicting results on the amount of nucleon spin carried by strange quarks. Quasi-elastic neutrino scattering, observed using a novel detection technique, provides a theoretically clean measure of this quantity. The optimum neutrino beam energy needed to measure the strange spin of the nucleon is 1 GeV. This is also an ideal energy to search for neutrino oscillations at high in an astrophysically interesting region. Models of the r-process in supernovae which include high-mass sterile neutrinos may explain the abundance of neutron-rich heavy metals in the universe. These high-mass sterile neutrinos are outside the sensitivity region of any previous neutrino oscillation experiments. The Booster neutrino beamline at Fermilab provides the world's highest intensity neutrino beam in the 0.5-1.0 GeV energy range, a range ideal for both of these measurements. A small detector located upstream of the MiniBooNE detector, 100 m from the recently commissioned Booster neutrino source, could definitively measure the strange quark contribution to the nucleon spin. This detector, in conjunction with the MiniBooNE detector, could also investigate disappearance in a currently unexplored, cosmologically interesting region
Incidence of post myocardial infarction left ventricular thrombus formation in the era of primary percutaneous intervention and glycoprotein IIb/IIIa inhibitors. A prospective observational study
BACKGROUND: Before the widespread use of primary percutaneous coronary intervention (PCI) and glycoprotein IIb/IIIa inhibitors (GP IIb/IIIa) left ventricular (LV) thrombus formation had been reported to complicate up to 20% of acute myocardial infarctions (AMI). The incidence of LV thrombus formation with these treatment modalities is not well known. METHODS: 92 consecutive patients with ST-elevation AMI treated with PCI and GP IIb/IIIa inhibitors underwent 2-D echocardiograms, with and without echo contrast agent, within 24–72 hours. RESULTS: Only 4/92 (4.3%) had an LV thrombus, representing a significantly lower incidence than that reported in the pre-PCI era. Use of contrast agents did not improve detection of LV thrombi in our study. CONCLUSION: The incidence of LV thrombus formation after acute MI, in the current era of rapid reperfusion, is lower than what has been historically reported
A pipeline for high throughput detection and mapping of SNPs from EST databases
Single nucleotide polymorphisms (SNPs) represent the most abundant type of genetic variation that can be used as molecular markers. The SNPs that are hidden in sequence databases can be unlocked using bioinformatic tools. For efficient application of these SNPs, the sequence set should be error-free as much as possible, targeting single loci and suitable for the SNP scoring platform of choice. We have developed a pipeline to effectively mine SNPs from public EST databases with or without quality information using QualitySNP software, select reliable SNP and prepare the loci for analysis on the Illumina GoldenGate genotyping platform. The applicability of the pipeline was demonstrated using publicly available potato EST data, genotyping individuals from two diploid mapping populations and subsequently mapping the SNP markers (putative genes) in both populations. Over 7000 reliable SNPs were identified that met the criteria for genotyping on the GoldenGate platform. Of the 384 SNPs on the SNP array approximately 12% dropped out. For the two potato mapping populations 165 and 185 SNPs segregating SNP loci could be mapped on the respective genetic maps, illustrating the effectiveness of our pipeline for SNP selection and validation
Mutator dynamics in sexual and asexual experimental populations of yeast
<p>Abstract</p> <p>Background</p> <p>In asexual populations, mutators may be expected to hitchhike with associated beneficial mutations. In sexual populations, recombination is predicted to erode such associations, inhibiting mutator hitchhiking. To investigate the effect of recombination on mutators experimentally, we compared the frequency dynamics of a mutator allele (<it>msh2</it>Δ) in sexual and asexual populations of <it>Saccharomyces cerevisiae</it>.</p> <p>Results</p> <p>Mutator strains increased in frequency at the expense of wild-type strains in all asexual diploid populations, with some approaching fixation in 150 generations of propagation. Over the same period of time, mutators declined toward loss in all corresponding sexual diploid populations as well as in haploid populations propagated asexually.</p> <p>Conclusions</p> <p>We report the first experimental investigation of mutator dynamics in sexual populations. We show that a strong mutator quickly declines in sexual populations while hitchhiking to high frequency in asexual diploid populations, as predicted by theory. We also show that the <it>msh2Δ </it>mutator has a high and immediate realized cost that is alone sufficient to explain its decline in sexual populations. We postulate that this cost is indirect; namely, that it is due to a very high rate of recessive lethal or strongly deleterious mutation. However, we cannot rule out the possibility that <it>msh2</it>Δ also has unknown directly deleterious effects on fitness, and that these effects may differ between haploid asexual and sexual populations. Despite these reservations, our results prompt us to speculate that the short-term cost of highly deleterious recessive mutations can be as important as recombination in preventing mutator hitchhiking in sexual populations.</p
Structural Discrimination of Robustness in Transcriptional Feedforward Loops for Pattern Formation
Signaling pathways are interconnected to regulatory circuits for sensing the environment and expressing the appropriate genetic profile. In particular, gradients of diffusing molecules (morphogens) determine cell fate at a given position, dictating development and spatial organization. The feedforward loop (FFL) circuit is among the simplest genetic architectures able to generate one-stripe patterns by operating as an amplitude detection device, where high output levels are achieved at intermediate input ones. Here, using a heuristic optimization-based approach, we dissected the design space containing all possible topologies and parameter values of the FFL circuits. We explored the ability of being sensitive or adaptive to variations in the critical morphogen level where cell fate is switched. We found four different solutions for precision, corresponding to the four incoherent architectures, but remarkably only one mode for adaptiveness, the incoherent type 4 (I4-FFL). We further carried out a theoretical study to unveil the design principle for such structural discrimination, finding that the synergistic action and cooperative binding on the downstream promoter are instrumental to achieve absolute adaptive responses. Subsequently, we analyzed the robustness of these optimal circuits against perturbations in the kinetic parameters and molecular noise, which has allowed us to depict a scenario where adaptiveness, parameter sensitivity and noise tolerance are different, correlated facets of the robustness of the I4-FFL circuit. Strikingly, we showed a strong correlation between the input (environment-related) and the intrinsic (mutation-related) susceptibilities. Finally, we discussed the evolution of incoherent regulations in terms of multifunctionality and robustness
- …