3,360 research outputs found
Ferromagnetic Quantum Critical Point in CePdP with Pd Ni Substitution
An investigation of the structural, thermodynamic, and electronic transport
properties of the isoelectronic chemical substitution series
Ce(PdNi)P is reported, where a possible ferromagnetic
quantum critical point is uncovered in the temperature - concentration ()
phase diagram. This behavior results from the simultaneous contraction of the
unit cell volume, which tunes the relative strengths of the Kondo and RKKY
interactions, and the introduction of disorder through alloying. Near the
critical region at 0.7, the rate of contraction of the
unit cell volume strengthens, indicating that the cerium -valence crosses
over from trivalent to a non-integer value. Consistent with this picture, x-ray
absorption spectroscopy measurements reveal that while CePdP has a
purely trivalent cerium -state, CeNiP has a small ( 10 \%)
tetravalent contribution. In a broad region around , there is a
breakdown of Fermi liquid temperature dependences, signaling the influence of
quantum critical fluctuations and disorder effects. Measurements of clean
CePdP furthermore show that applied pressure has a similar initial
effect to alloying on the ferromagnetic order. From these results,
CePdP emerges as a keystone system to test theories such as the
Belitz-Kirkpatrick-Vojta model for ferromagnetic quantum criticality, where
distinct behaviors are expected in the dirty and clean limits.Comment: 9 pages, 8 figure
Deformation of the Fermi surface in the extended Hubbard model
The deformation of the Fermi surface induced by Coulomb interactions is
investigated in the t-t'-Hubbard model. The interplay of the local U and
extended V interactions is analyzed. It is found that exchange interactions V
enhance small anisotropies producing deformations of the Fermi surface which
break the point group symmetry of the square lattice at the Van Hove filling.
This Pomeranchuck instability competes with ferromagnetism and is suppressed at
a critical value of U(V). The interaction V renormalizes the t' parameter to
smaller values what favours nesting. It also induces changes on the topology of
the Fermi surface which can go from hole to electron-like what may explain
recent ARPES experiments.Comment: 5 pages, 4 ps figure
Doping the holographic Mott insulator
Mott insulators form because of strong electron repulsions, being at the
heart of strongly correlated electron physics. Conventionally these are
understood as classical "traffic jams" of electrons described by a short-ranged
entangled product ground state. Exploiting the holographic duality, which maps
the physics of densely entangled matter onto gravitational black hole physics,
we show how Mott-insulators can be constructed departing from entangled
non-Fermi liquid metallic states, such as the strange metals found in cuprate
superconductors. These "entangled Mott insulators" have traits in common with
the "classical" Mott insulators, such as the formation of Mott gap in the
optical conductivity, super-exchange-like interactions, and form "stripes" when
doped. They also exhibit new properties: the ordering wave vectors are detached
from the number of electrons in the unit cell, and the DC resistivity diverges
algebraically instead of exponentially as function of temperature. These
results may shed light on the mysterious ordering phenomena observed in
underdoped cuprates.Comment: 27 pages, 9 figures. Accepted in Nature Physic
Joint PDF modelling of turbulent flow and dispersion in an urban street canyon
The joint probability density function (PDF) of turbulent velocity and
concentration of a passive scalar in an urban street canyon is computed using a
newly developed particle-in-cell Monte Carlo method. Compared to moment
closures, the PDF methodology provides the full one-point one-time PDF of the
underlying fields containing all higher moments and correlations. The
small-scale mixing of the scalar released from a concentrated source at the
street level is modelled by the interaction by exchange with the conditional
mean (IECM) model, with a micro-mixing time scale designed for geometrically
complex settings. The boundary layer along no-slip walls (building sides and
tops) is fully resolved using an elliptic relaxation technique, which captures
the high anisotropy and inhomogeneity of the Reynolds stress tensor in these
regions. A less computationally intensive technique based on wall functions to
represent boundary layers and its effect on the solution are also explored. The
calculated statistics are compared to experimental data and large-eddy
simulation. The present work can be considered as the first example of
computation of the full joint PDF of velocity and a transported passive scalar
in an urban setting. The methodology proves successful in providing high level
statistical information on the turbulence and pollutant concentration fields in
complex urban scenarios.Comment: Accepted in Boundary-Layer Meteorology, Feb. 19, 200
The social geography of unmarried cohabitation in the USA, 2007-2011
US studies of marriage and cohabitation have mainly highlighted the social and racial differentials as they were observed in cross-sections, and have as a result essentially focused on the "pattern of disadvantage". The evolution of such social differentials over time and space reveals that this pattern of disadvantage has clearly persisted, but that it is far from covering the whole story. Historically, there has been a major contribution to the rise of cohabitation by white college students, and later on young white adults with higher education continued to start unions via cohabitation to ever increasing degrees. Only, they seem to move into marriage to a greater extent later on in life than other population segments. Also, the religious affiliation matters greatly: Mormons and evangelical Christians have resisted the current trends. Furthermore this effect is not only operating at the individual but at the contextual level as well. Conversely, even after controls for competing socio-economic explanations, residence in areas (either counties or PUMA-areas) with a Democratic voting pattern is related to higher cohabitation probabilities. And, finally, different legal contexts at the level of States also significantly contributed to the emergence of strong spatial contrasts. Hence, there is a concurrence of several factors shaping the present differentiations, and the rise of secular and liberal attitudes, i.e. the "ethics revolution", is equally a part of the explanation
Lateral Gene Expression in Drosophila Early Embryos Is Supported by Grainyhead-Mediated Activation and Tiers of Dorsally-Localized Repression
The general consensus in the field is that limiting amounts of the transcription factor Dorsal establish dorsal boundaries of genes expressed along the dorsal-ventral (DV) axis of early Drosophila embryos, while repressors establish ventral boundaries. Yet recent studies have provided evidence that repressors act to specify the dorsal boundary of intermediate neuroblasts defective (ind), a gene expressed in a stripe along the DV axis in lateral regions of the embryo. Here we show that a short 12 base pair sequence (“the A-box”) present twice within the ind CRM is both necessary and sufficient to support transcriptional repression in dorsal regions of embryos. To identify binding factors, we conducted affinity chromatography using the A-box element and found a number of DNA-binding proteins and chromatin-associated factors using mass spectroscopy. Only Grainyhead (Grh), a CP2 transcription factor with a unique DNA-binding domain, was found to bind the A-box sequence. Our results suggest that Grh acts as an activator to support expression of ind, which was surprising as we identified this factor using an element that mediates dorsally-localized repression. Grh and Dorsal both contribute to ind transcriptional activation. However, another recent study found that the repressor Capicua (Cic) also binds to the A-box sequence. While Cic was not identified through our A-box affinity chromatography, utilization of the same site, the A-box, by both factors Grh (activator) and Cic (repressor) may also support a “switch-like” response that helps to sharpen the ind dorsal boundary. Furthermore, our results also demonstrate that TGF-β signaling acts to refine ind CRM expression in an A-box independent manner in dorsal-most regions, suggesting that tiers of repression act in dorsal regions of the embryo
3D Multicolor Super-Resolution Imaging Offers Improved Accuracy in Neuron Tracing
The connectivity among neurons holds the key to understanding brain function. Mapping neural connectivity in brain circuits requires imaging techniques with high spatial resolution to facilitate neuron tracing and high molecular specificity to mark different cellular and molecular populations. Here, we tested a three-dimensional (3D), multicolor super-resolution imaging method, stochastic optical reconstruction microscopy (STORM), for tracing neural connectivity using cultured hippocampal neurons obtained from wild-type neonatal rat embryos as a model system. Using a membrane specific labeling approach that improves labeling density compared to cytoplasmic labeling, we imaged neural processes at 44 nm 2D and 116 nm 3D resolution as determined by considering both the localization precision of the fluorescent probes and the Nyquist criterion based on label density. Comparison with confocal images showed that, with the currently achieved resolution, we could distinguish and trace substantially more neuronal processes in the super-resolution images. The accuracy of tracing was further improved by using multicolor super-resolution imaging. The resolution obtained here was largely limited by the label density and not by the localization precision of the fluorescent probes. Therefore, higher image resolution, and thus higher tracing accuracy, can in principle be achieved by further improving the label density
TGF-b2 induction regulates invasiveness of theileria-transformed leukocytes and disease susceptibility
Theileria parasites invade and transform bovine leukocytes causing either East Coast fever (T. parva), or tropical theileriosis (T. annulata). Susceptible animals usually die within weeks of infection, but indigenous infected cattle show markedly reduced pathology, suggesting that host genetic factors may cause disease susceptibility. Attenuated live vaccines are widely used to control tropical theileriosis and attenuation is associated with reduced invasiveness of infected macrophages in vitro. Disease pathogenesis is therefore linked to aggressive invasiveness, rather than uncontrolled proliferation of Theileria-infected leukocytes. We show that the invasive potential of Theileria-transformed leukocytes involves TGF-b signalling. Attenuated live vaccine lines express reduced TGF-b2 and their invasiveness can be rescued with exogenous TGF-b. Importantly, infected macrophages from disease susceptible Holstein-Friesian (HF) cows express more TGF-b2 and traverse Matrigel with great efficiency compared to those from disease-resistant Sahiwal cattle. Thus, TGF-b2 levels correlate with disease susceptibility. Using fluorescence and time-lapse video microscopy we show that Theileria-infected, disease-susceptible HF macrophages exhibit increased actin dynamics in their lamellipodia and podosomal adhesion structures and develop more membrane blebs. TGF-b2-associated invasiveness in HF macrophages has a transcription-independent element that relies on cytoskeleton remodelling via activation of Rho kinase (ROCK). We propose that a TGF-b autocrine loop confers an amoeboid-like motility on Theileria-infected leukocytes, which combines with MMP-dependent motility to drive invasiveness and virulence
Measurement of the Negative Muon Anomalous Magnetic Moment to 0.7 ppm
The anomalous magnetic moment of the negative muon has been measured to a
precision of 0.7 parts per million (ppm) at the Brookhaven Alternating Gradient
Synchrotron. This result is based on data collected in 2001, and is over an
order of magnitude more precise than the previous measurement of the negative
muon. The result a_mu= 11 659 214(8)(3) \times 10^{-10} (0.7 ppm), where the
first uncertainty is statistical and the second is sytematic, is consistend
with previous measurements of the anomaly for the positive and negative muon.
The average for the muon anomaly a_{mu}(exp) = 11 659 208(6) \times 10^{-10}
(0.5ppm).Comment: 4 pages, 4 figures, submitted to Physical Review Letters, revised to
reflect referee comments. Text further revised to reflect additional referee
comments and a corrected Fig. 3 replaces the older versio
- …