1,470 research outputs found

    Pediatric resident and faculty attitudes toward self-assessment and self-directed learning: a cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The development of self-assessment and self-directed learning skills is essential to lifelong learning and becoming an effective physician. Pediatric residents in the United States are now required to use Individualized Learning Plans (ILPs) to document self-assessment and self-directed learning. A better understanding of resident and faculty attitudes and skills about self-assessment and self-directed learning will allow more successful integration of lifelong learning into residency education. The objective of this study was to compare faculty and resident attitudes, knowledge and skills about self-assessment, self-directed learning and ILPs.</p> <p>Methods</p> <p>Survey of pediatric residents and faculty at a single institution. Respondents rated their attitudes, knowledge, and self-perceived skills surrounding self-assessment, self-directed learning and ILPs.</p> <p>Results</p> <p>Overall survey response rate was 81% (79/97); 100% (36/36) residents and 70% (43/61) faculty. Residents and faculty agreed that lifelong learning is a necessary part of being a physician. Both groups were comfortable with assessing their own strengths and weaknesses and developing specific goals to improve their own performance. However, residents were less likely than faculty to continuously assess their own performance (44% vs. 81%; p < 0.001) or continuously direct their own learning (53% vs. 86%; p < 0.001). Residents were more likely than faculty to believe that residents should be primarily responsible for directing their own learning (64% vs. 19%; p < 0.0001), but at the same time, more residents believed that assigned clinical (31% vs. 0%; p < 0.0001) or curricular (31% vs. 0%; p < 0.0001) experiences were sufficient to make them competent physicians. Interns were less likely than senior residents to have a good understanding of how to assess their own skills (8% vs. 58%; p = 0.004) or what it means to be a self-directed learner (50% vs. 83%; p = 0.04).</p> <p>Qualitative comments indicated that while ILPs have the potential to help learners develop individualized, goal-directed learning plans based on strengths and weaknesses, successful implementation will require dedicated time and resident and faculty development.</p> <p>Conclusion</p> <p>These findings suggest that training and experience are necessary for physicians to understand the role of self-directed learning in education. Deliberate practice, for example by requiring residents to use ILPs, may facilitate self-directed, lifelong learning.</p

    The optimization of in vitro high-throughput chemical lysis of Escherichia coli. Application to ACP domain of the polyketide synthase ppsC from Mycobacterium tuberculosis

    Get PDF
    Protein production in Escherichia coli involves high-level expression in a culture, followed by harvesting of the cells and finally their disruption, or lysis, to release the expressed proteins. We compare three high-throughput chemical lysis methods to sonication, using a robotic platform and methodologies developed in our laboratory [1]. Under the same expression conditions, all lysis methods varied in the degree of released soluble proteins. With a set of 96 test proteins, we used our split GFP to quantify the soluble and insoluble protein fractions after lysis. Both the amount of soluble protein and the percentage recovered in the soluble fraction using SoluLyse® were well correlated with sonication. Two other methods, Bugbuster® and lysozyme, did not correlate well with sonication. Considering the effects of lysis methods on protein solubility is especially important when accurate protein solubility measurements are needed, for example, when testing adjuvants, growth media, temperature, or when establishing the effects of truncation or sequence variation on protein stability

    Wheat-barley hybridization – the last forty years

    Get PDF
    Abstract Several useful alien gene transfers have been reported from related species into wheat (Triticum aestivum), but very few publications have dealt with the development of wheat/barley (Hordeum vulgare) introgression lines. An overview is given here of wheat 9 barley hybridization over the last forty years, including the development of wheat 9 barley hybrids, and of addition and translocation lines with various barley cultivars. A short summary is also given of the wheat 9 barley hybrids produced with other Hordeum species. The meiotic pairing behaviour of wheat 9 barley hybrids is presented, with special regard to the detection of wheat– barley homoeologous pairing using the molecular cytogenetic technique GISH. The effect of in vitro multiplication on the genome composition of intergeneric hybrids is discussed, and the production and characterization of the latest wheat/barley translocation lines are presented. An overview of the agronomical traits (b-glucan content, earliness, salt tolerance, sprouting resistance, etc.) of the newly developed introgression lines is given. The exploitation and possible use of wheat/barley introgression lines for the most up-to-date molecular genetic studies (transcriptome analysis, sequencing of flow-sorted chromosomes) are also discussed

    Artificial Intelligence in Education

    Get PDF
    Artificial Intelligence (AI) technologies have been researched in educational contexts for more than 30 years (Woolf 1988; Cumming and McDougall 2000; du Boulay 2016). More recently, commercial AI products have also entered the classroom. However, while many assume that Artificial Intelligence in Education (AIED) means students taught by robot teachers, the reality is more prosaic yet still has the potential to be transformative (Holmes et al. 2019). This chapter introduces AIED, an approach that has so far received little mainstream attention, both as a set of technologies and as a field of inquiry. It discusses AIED’s AI foundations, its use of models, its possible future, and the human context. It begins with some brief examples of AIED technologies

    Estimation and analysis of multi-GNSS differential code biases using a hardware signal simulator

    Get PDF
    In ionospheric modeling, the differential code biases (DCBs) are a non-negligible error source, which are routinely estimated by the different analysis centers of the International GNSS Service (IGS) as a by-product of their global ionospheric analysis. These are, however, estimated only for the IGS station receivers and for all the satellites of the different GNSS constellations. A technique is proposed for estimating the receiver and satellites DCBs in a global or regional network by first estimating the DCB of one receiver set as reference. This receiver DCB is then used as a ‘known’ parameter to constrain the global ionospheric solution, where the receiver and satellite DCBs are estimated for the entire network. This is in contrast to the constraint used by the IGS, which assumes that the involved satellites DCBs have a zero mean. The ‘known’ receiver DCB is obtained by simulating signals that are free of the ionospheric, tropospheric and other group delays using a hardware signal simulator. When applying the proposed technique for Global Positioning System legacy signals, mean offsets in the order of 3 ns for satellites and receivers were found to exist between the estimated DCBs and the IGS published DCBs. It was shown that these estimated DCBs are fairly stable in time, especially for the legacy signals. When the proposed technique is applied for the DCBs estimation using the newer Galileo signals, an agreement at the level of 1–2 ns was found between the estimated DCBs and the manufacturer’s measured DCBs, as published by the European Space Agency, for the three still operational Galileo in-orbit validation satellites

    CD133+ adult human retinal cells remain undifferentiated in Leukaemia Inhibitory Factor (LIF)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>CD133 is a cell surface marker of haematopoietic stem and progenitor cells. Leukaemia inhibitory factor (LIF), sustains proliferation and not differentiation of embryonic stem cells. We used CD133 to purify adult human retinal cells and aimed to determine what effect LIF had on these cultures and whether they still had the ability to generate neurospheres.</p> <p>Methods</p> <p>Retinal cell suspensions were derived from adult human post-mortem tissue with ethical approval. With magnetic automated cell sorting (MACS) CD133<sup>+ </sup>retinal cells were enriched from post mortem adult human retina. CD133<sup>+ </sup>retinal cell phenotype was analysed by flow cytometry and cultured cells were observed for proliferative capacity, neuropshere generation and differentiation with or without LIF supplementation.</p> <p>Results</p> <p>We demonstrated purification (to 95%) of CD133<sup>+ </sup>cells from adult human postmortem retina. Proliferating cells were identified through BrdU incorporation and expression of the proliferation markers Ki67 and Cyclin D1. CD133<sup>+ </sup>retinal cells differentiated whilst forming neurospheres containing appropriate lineage markers including glia, neurons and photoreceptors. LIF maintained CD133<sup>+ </sup>retinal cells in a proliferative and relatively undifferentiated state (Ki67, Cyclin D1 expression) without significant neurosphere generation. Differentiation whilst forming neurospheres was re-established on LIF withdrawal.</p> <p>Conclusion</p> <p>These data support the evidence that CD133 expression characterises a population of cells within the resident adult human retina which have progenitor cell properties and that their turnover and differentiation is influenced by LIF. This may explain differences in retinal responses observed following disease or injury.</p

    Measurement of the branching fraction and CP content for the decay B(0) -> D(*+)D(*-)

    Get PDF
    This is the pre-print version of the Article. The official published version can be accessed from the links below. Copyright @ 2002 APS.We report a measurement of the branching fraction of the decay B0→D*+D*- and of the CP-odd component of its final state using the BABAR detector. With data corresponding to an integrated luminosity of 20.4  fb-1 collected at the Υ(4S) resonance during 1999–2000, we have reconstructed 38 candidate signal events in the mode B0→D*+D*- with an estimated background of 6.2±0.5 events. From these events, we determine the branching fraction to be B(B0→D*+D*-)=[8.3±1.6(stat)±1.2(syst)]×10-4. The measured CP-odd fraction of the final state is 0.22±0.18(stat)±0.03(syst).This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF (Germany), INFN (Italy), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from the A.P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation
    corecore