2,597 research outputs found
Characterization of a cellulolytic enzyme from wood degrading bacteria, Bacillus circulans
This report describes the purification and characterization of an enzyme that exhibits cellulase activity produced by the wood degrading bacteria, Bacillus circulans. The enzyme was purified by ion-exchange chromatography using CM-Sepharose CL-6B, and shown to exhibit hydrolytic activity on carboxymethylcellulose. The molecular weight of the purified enzyme was determined to be 43 KDa by means of SDS-PAGE. The kinetic parameters, and the effects of pH and temperature on the purified enzyme were determined. The enzyme was 4.37 fold and showed a specific activity of 29.13 μg of glucose produced/min/mg protein. The apparent Km value for the hydrolysis of carboxymethylcellulose was 1.061 ± 1.17 mg/ml with a Vmax of 13.75 ± 1.51 μg of glucose produced/ml/min. The enzyme showed an optimum pH value of 9.0 and the optimum temperature was 50 °C. Alkalophilicity and moderate thermostability of this enzyme are some of its essential characteristics that may make it suitable for industrial and biotechnological applications.Keywords: Bacillus circulans, cellulase, decayed wood, optimum, bacteria, enzym
Influence of chromophores on quarternary structure of phycobiliproteins from the cyanobacterium, Mastigocladus laminosus
Chromophores of C-phycocyanin and phycoerythrο-cyanin have been chemically modified by reduction to
rubins , bleaching , photoisomerization , or perturbation
with bulky substituents. Pigments containing modified
chromophores, or hybrids containing modified and unmodified chromophores in individual protomers have been prepared. All modifications inhibit the association of the
(aß)-protomers of these pigments to higher aggregates. The
results demonstrate a pronounced effect of the state of
the chromophores on biliprotein quaternary structure. It
may be important in phycobi1isome assembly , and also in
the dual function of biliproteins as (i) antenna pigments
for photosynthesis and (ii) reaction centers for photomor-phogenesis
Human-robot shared control for surgical robot based on context-aware sim-to-real adaptation
Human-robot shared control, which integrates the advantages of both humans and robots, is an effective approach to facilitate efficient surgical operation. Learning from demonstration (LfD) techniques can be used to automate some of the surgical sub tasks for the construction of the shared control mechanism. However, a sufficient amount of data is required for the robot to learn the manoeuvres. Using a surgical simulator to collect data is a less resource-demanding approach. With sim-to-real adaptation, the manoeuvres learned from a simulator can be transferred to a physical robot. To this end, we propose a sim-to-real adaptation method to construct a human-robot shared control framework for robotic surgery. In this paper, a desired trajectory is generated from a simulator using LfD method, while dynamic motion primitives (DMP) is used to transfer the desired trajectory from the simulator to the physical robotic platform. Moreover, a role adaptation mechanism is developed such that the robot can adjust its role according to the surgical operation contexts predicted by a neural network model. The effectiveness of the proposed framework is validated on the da Vinci Research Kit (dVRK). Results of the user studies indicated that with the adaptive human-robot shared control framework, the path length of the remote controller, the total clutching number and the task completion time can be reduced significantly. The proposed method outperformed the traditional manual control via teleoperation
Recommended from our members
State of the California current 2012-13: No such thing as an “average” year
This report reviews the state of the California Current System (CCS) between winter 2012 and spring 2013, and includes observations from Washington State to Baja California. During 2012, large-scale climate modes indicated the CCS remained in a cool, productive phase present since 2007. The upwelling season was delayed north of 42°N, but regions to the south, especially 33° to 36°N, experienced average to above average upwelling that persisted throughout the summer. Contrary to the indication of high production suggested by the climate indices, chlorophyll observed from surveys and remote sensing was below average along much of the coast. As well, some members of the forage assemblages along the coast experienced low abundances in 2012 surveys. Specifically, the concentrations of all lifestages observed directly or from egg densities of Pacific sardine, Sardinops sagax, and northern anchovy, Engraulis mordax, were less than previous years’ survey estimates. However, 2013 surveys and observations indicate an increase in abundance of northern anchovy. During winter 2011/2012, the increased presence of northern copepod species off northern California was consistent with stronger southward transport. Krill and small-fraction zooplankton abundances, where examined, were generally above average. North of 42°N, salps returned to typical abundances in 2012 after greater observed concentrations in 2010 and 2011. In contrast, salp abundance off central and southern California increased after a period of southward transport during winter 2011/2012. Reproductive success of piscivorous Brandt’s cormorant, Phalacrocorax penicillatus, was reduced while planktivorous Cassin’s auklet, Ptychoramphus aleuticus was elevated. Differences between the productivity of these two seabirds may be related to the available forage assemblage observed in the surveys. California sea lion pups from San Miguel Island were undernourished resulting in a pup mortality event perhaps in response to changes in forage availability. Limited biological data were available for spring 2013, but strong winter upwelling coastwide indicated an early spring transition, with the strong upwelling persisting into early summer
Frozen and Invariant Quantum Discord under Local Dephasing Noise
In this chapter, we intend to explore and review some remarkable dynamical
properties of quantum discord under various different open quantum system
models. Specifically, our discussion will include several concepts connected to
the phenomena of time invariant and frozen quantum discord. Furthermore, we
will elaborate on the relation of these two phenomena to the non-Markovian
features of the open system dynamics and to the usage of dynamical decoupling
protocols.Comment: 29 pages, 8 figure
Phase transitions in biological membranes
Native membranes of biological cells display melting transitions of their
lipids at a temperature of 10-20 degrees below body temperature. Such
transitions can be observed in various bacterial cells, in nerves, in cancer
cells, but also in lung surfactant. It seems as if the presence of transitions
slightly below physiological temperature is a generic property of most cells.
They are important because they influence many physical properties of the
membranes. At the transition temperature, membranes display a larger
permeability that is accompanied by ion-channel-like phenomena even in the
complete absence of proteins. Membranes are softer, which implies that
phenomena such as endocytosis and exocytosis are facilitated. Mechanical signal
propagation phenomena related to nerve pulses are strongly enhanced. The
position of transitions can be affected by changes in temperature, pressure, pH
and salt concentration or by the presence of anesthetics. Thus, even at
physiological temperature, these transitions are of relevance. There position
and thereby the physical properties of the membrane can be controlled by
changes in the intensive thermodynamic variables. Here, we review some of the
experimental findings and the thermodynamics that describes the control of the
membrane function.Comment: 23 pages, 15 figure
Nonlinear climatic sensitivity to greenhouse gases over past 4 glacial/interglacial cycles.
The paleoclimatic sensitivity to atmospheric greenhouse gases (GHGs) has recently been suggested to be nonlinear, however a GHG threshold value associated with deglaciation remains uncertain. Here, we combine a new sea surface temperature record spanning the last 360,000 years from the southern Western Pacific Warm Pool with records from five previous studies in the equatorial Pacific to document the nonlinear relationship between climatic sensitivity and GHG levels over the past four glacial/interglacial cycles. The sensitivity of the responses to GHG concentrations rises dramatically by a factor of 2-4 at atmospheric CO2 levels of >220 ppm. Our results suggest that the equatorial Pacific acts as a nonlinear amplifier that allows global climate to transition from deglacial to full interglacial conditions once atmospheric CO2 levels reach threshold levels
Perspectives on the Trypanosoma cruzi-host cell receptor interaction
Chagas disease is caused by the parasite Trypanosoma cruzi. The critical initial event is the interaction of the trypomastigote form of the parasite with host receptors. This review highlights recent observations concerning these interactions. Some of the key receptors considered are those for thromboxane, bradykinin, and for the nerve growth factor TrKA. Other important receptors such as galectin-3, thrombospondin, and laminin are also discussed. Investigation into the molecular biology and cell biology of host receptors for T. cruzi may provide novel therapeutic targets
- …