175 research outputs found

    Pharmacognostic Investigation and HPTLC Fingerprinting of a Siddha Polyherbal Drug, Padai chankaran

    Get PDF
    The present study aims to establish the quality and purity of a Siddha formulation, Padai chankaran by laying down various pharmacognostic parameters, physico-chemical constants and HPTLC fingerprint profiles. Padai chankaran is a Siddha polyherbal preparation comprised of Catunaregum spinosa โ€“ root bark, C. spinosa โ€“ seed and Alangium salvifolium โ€“ root bark as the ingredients. The formulation is used as an external application, having astringent, anthelmintic and antiseptic activities that supports in healing of ulcers and dermatological diseases. Powder microscopy studies and physico-chemical analysis were carried out. Also, an attempt has been made to develop a HPTLC method for phytochemical fingerprinting and the mobile phase Toluene: Ethyl acetate: Formic acid (5: 2: 0.1) gave the best resolution for various components. Hence, the aforesaid analyses confirmed the purity and quality of the Siddha formulation for their future applications. Keywords: Padai chankaran, powder microscopy, physico-chemical, HPTLC studie

    Reconstructing phylogenies from noisy quartets in polynomial time with a high success probability

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In recent years, quartet-based phylogeny reconstruction methods have received considerable attentions in the computational biology community. Traditionally, the accuracy of a phylogeny reconstruction method is measured by simulations on synthetic datasets with known "true" phylogenies, while little theoretical analysis has been done. In this paper, we present a new model-based approach to measuring the accuracy of a quartet-based phylogeny reconstruction method. Under this model, we propose three efficient algorithms to reconstruct the "true" phylogeny with a high success probability.</p> <p>Results</p> <p>The first algorithm can reconstruct the "true" phylogeny from the input quartet topology set without quartet errors in <it>O</it>(<it>n</it><sup>2</sup>) time by querying at most (<it>n </it>- 4) log(<it>n </it>- 1) quartet topologies, where <it>n </it>is the number of the taxa. When the input quartet topology set contains errors, the second algorithm can reconstruct the "true" phylogeny with a probability approximately 1 - <it>p </it>in <it>O</it>(<it>n</it><sup>4 </sup>log <it>n</it>) time, where <it>p </it>is the probability for a quartet topology being an error. This probability is improved by the third algorithm to approximately <inline-formula><m:math name="1748-7188-3-1-i1" xmlns:m="http://www.w3.org/1998/Math/MathML"><m:semantics><m:mrow><m:mfrac><m:mn>1</m:mn><m:mrow><m:mn>1</m:mn><m:mo>+</m:mo><m:msup><m:mi>q</m:mi><m:mn>2</m:mn></m:msup><m:mo>+</m:mo><m:mfrac><m:mn>1</m:mn><m:mn>2</m:mn></m:mfrac><m:msup><m:mi>q</m:mi><m:mn>4</m:mn></m:msup><m:mo>+</m:mo><m:mfrac><m:mn>1</m:mn><m:mrow><m:mn>16</m:mn></m:mrow></m:mfrac><m:msup><m:mi>q</m:mi><m:mn>5</m:mn></m:msup></m:mrow></m:mfrac></m:mrow><m:annotation encoding="MathType-MTEF"> MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacPC6xNi=xH8viVGI8Gi=hEeeu0xXdbba9frFj0xb9qqpG0dXdb9aspeI8k8fiI+fsY=rqGqVepae9pg0db9vqaiVgFr0xfr=xfr=xc9adbaqaaeGacaGaaiaabeqaaeqabiWaaaGcbaqcfa4aaSaaaeaacqaIXaqmaeaacqaIXaqmcqGHRaWkcqWGXbqCdaahaaqabeaacqaIYaGmaaGaey4kaSYaaSaaaeaacqaIXaqmaeaacqaIYaGmaaGaemyCae3aaWbaaeqabaGaeGinaqdaaiabgUcaRmaalaaabaGaeGymaedabaGaeGymaeJaeGOnaydaaiabdghaXnaaCaaabeqaaiabiwda1aaaaaaaaa@3D5A@</m:annotation></m:semantics></m:math></inline-formula>, where <inline-formula><m:math name="1748-7188-3-1-i2" xmlns:m="http://www.w3.org/1998/Math/MathML"><m:semantics><m:mrow><m:mi>q</m:mi><m:mo>=</m:mo><m:mfrac><m:mi>p</m:mi><m:mrow><m:mn>1</m:mn><m:mo>โˆ’</m:mo><m:mi>p</m:mi></m:mrow></m:mfrac></m:mrow><m:annotation encoding="MathType-MTEF"> MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacPC6xNi=xH8viVGI8Gi=hEeeu0xXdbba9frFj0xb9qqpG0dXdb9aspeI8k8fiI+fsY=rqGqVepae9pg0db9vqaiVgFr0xfr=xfr=xc9adbaqaaeGacaGaaiaabeqaaeqabiWaaaGcbaGaemyCaeNaeyypa0tcfa4aaSaaaeaacqWGWbaCaeaacqaIXaqmcqGHsislcqWGWbaCaaaaaa@3391@</m:annotation></m:semantics></m:math></inline-formula>, with running time of <it>O</it>(<it>n</it><sup>5</sup>), which is at least 0.984 when <it>p </it>< 0.05.</p> <p>Conclusion</p> <p>The three proposed algorithms are mathematically guaranteed to reconstruct the "true" phylogeny with a high success probability. The experimental results showed that the third algorithm produced phylogenies with a higher probability than its aforementioned theoretical lower bound and outperformed some existing phylogeny reconstruction methods in both speed and accuracy.</p

    Optimizing expression and purification of an ATP-binding gene gsiA from Escherichia coli k-12 by using GFP fusion

    Get PDF
    The cloning, expression and purification of the glutathione (sulfur) import system ATP-binding protein (gsiA) was carried out. The coding sequence of Escherichia coli gsiA, which encodes the ATP-binding protein of a glutathione importer, was amplified by PCR, and then inserted into a prokaryotic expression vector pWaldo-GFPe harboring green fluorescent protein (GFP) reporter gene. The resulting recombinant plasmid pWaldo-GFP-GsiA was transformed into various E. coli strains, and expression conditions were optimized. The effect of five E. coli expression strains on the production of the recombinant gsiA protein was evaluated. E. coli BL21 (DE3) was found to be the most productive strain for GsiA-GFP fusion-protein expression, most of which was insoluble fraction. However, results from in-gel and Western blot analysis suggested that expression of recombinant GsiA in Rosetta (DE3) provides an efficient source in soluble form. By using GFP as reporter, the most suitable host strain was conveniently obtained, whereby optimizing conditions for overexpression and purification of the proteins for further functional and structural studies, became, not only less laborious, but also time-saving

    Mutations in the Catalytic Loop HRD Motif Alter the Activity and Function of Drosophila Src64

    Get PDF
    The catalytic loop HRD motif is found in most protein kinases and these amino acids are predicted to perform functions in catalysis, transition to, and stabilization of the active conformation of the kinase domain. We have identified mutations in a Drosophila src gene, src64, that alter the three HRD amino acids. We have analyzed the mutants for both biochemical activity and biological function during development. Mutation of the aspartate to asparagine eliminates biological function in cytoskeletal processes and severely reduces fertility, supporting the amino acid's critical role in enzymatic activity. The arginine to cysteine mutation has little to no effect on kinase activity or cytoskeletal reorganization, suggesting that the HRD arginine may not be critical for coordinating phosphotyrosine in the active conformation. The histidine to leucine mutant retains some kinase activity and biological function, suggesting that this amino acid may have a biochemical function in the active kinase that is independent of its side chain hydrogen bonding interactions in the active site. We also describe the phenotypic effects of other mutations in the SH2 and tyrosine kinase domains of src64, and we compare them to the phenotypic effects of the src64 null allele

    DNA methylation in glioblastoma: impact on gene expression and clinical outcome

    Get PDF
    International audienceBACKGROUND: Changes in promoter DNA methylation pattern of genes involved in key biological pathways have been reported in glioblastoma. Genome-wide assessments of DNA methylation levels are now required to decipher the epigenetic events involved in the aggressive phenotype of glioblastoma, and to guide new treatment strategies. RESULTS: We performed a whole-genome integrative analysis of methylation and gene expression profiles in 40 newly diagnosed glioblastoma patients. We also screened for associations between the level of methylation of CpG sites and overall survival in a cohort of 50 patients uniformly treated by surgery, radiotherapy and chemotherapy with concomitant and adjuvant temozolomide (STUPP protocol). The methylation analysis identified 616 CpG sites differentially methylated between glioblastoma and control brain, a quarter of which was differentially expressed in a concordant way. Thirteen of the genes with concordant CpG sites displayed an inverse correlation between promoter methylation and expression level in glioblastomas: B3GNT5, FABP7, ZNF217, BST2, OAS1, SLC13A5, GSTM5, ME1, UBXD3, TSPYL5, FAAH, C7orf13, and C3orf14. Survival analysis identified six CpG sites associated with overall survival. SOX10 promoter methylation status (two CpG sites) stratified patients similarly to MGMT status, but with a higher Area Under the Curve (0.78 vs. 0.71, p-value < 5e-04). The methylation status of the FNDC3B, TBX3, DGKI, and FSD1 promoters identified patients with MGMT-methylated tumors that did not respond to STUPP treatment (p-value < 1e-04). CONCLUSIONS: This study provides the first genome-wide integrative analysis of DNA methylation and gene expression profiles obtained from the same GBM cohort. We also present a methylome-based survival analysis for one of the largest uniformly treated GBM cohort ever studied, for more than 27,000 CpG sites. We have identified genes whose expression may be tightly regulated by epigenetic mechanisms and markers that may guide treatment decisions

    Immunomodulation of murine collagen-induced arthritis by N, N-dimethylglycine and a preparation of Perna canaliculus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Rheumatoid arthritis (RA) and its accepted animal model, murine collagen-induced arthritis (CIA), are classic autoimmune inflammatory diseases which require proinflammatory cytokine production for pathogenesis. We and others have previously used N, N-dimethylglycine (DMG) and extracts from the New Zealand green-lipped mussel <it>Perna canaliculus </it>(Perna) as potent immunomodulators to modify ongoing immune and/or inflammatory responses.</p> <p>Methods</p> <p>In our initial studies, we treated lipopolysaccahride (LPS) stimulated THP-1 monocytes <it>in vitro </it>with increasing concentrations of Perna extract or DMG. Additionally, we treated rat peripheral blood neutrophils with increasing concentrations of Perna extract and measured superoxide burst. In subsequent <it>in vivo </it>experiments, CIA was induced by administration of type II collagen; rats were prophylactically treated with either Perna or DMG, and then followed for disease severity. Finally, to test whether Perna and/or DMG could block or inhibit an ongoing pathologic disease process, we induced CIA in mice and treated them therapeutically with either of the two immunomodulators.</p> <p>Results</p> <p>Following LPS stimulation of THP-1 monocytes, we observed dose-dependent reductions in TNF-ฮฑ and IL-12p40 production in Perna treated cultures. DMG treatment, however, showed significant increases in both of these cytokines in the range of 0.001โ€“1 ฮผM. We also demonstrate that <it>in vitro </it>neutrophil superoxide burst activity is dose-dependently reduced in the presence of Perna. Significant reductions in disease incidence, onset, and severity of CIA in rats were noted following prophylactic treatment with either of the two immunomodulators. More importantly, amelioration of mouse CIA was observed following therapeutic administration of Perna. In contrast, DMG appeared to have little effect in mice and may act in a species-specific manner.</p> <p>Conclusion</p> <p>These data suggest that Perna, and perhaps DMG, may be useful supplements to the treatment of RA in humans.</p

    Multiscale Coarse-Graining of the Protein Energy Landscape

    Get PDF
    A variety of coarse-grained (CG) models exists for simulation of proteins. An outstanding problem is the construction of a CG model with physically accurate conformational energetics rivaling all-atom force fields. In the present work, atomistic simulations of peptide folding and aggregation equilibria are force-matched using multiscale coarse-graining to develop and test a CG interaction potential of general utility for the simulation of proteins of arbitrary sequence. The reduced representation relies on multiple interaction sites to maintain the anisotropic packing and polarity of individual sidechains. CG energy landscapes computed from replica exchange simulations of the folding of Trpzip, Trp-cage and adenylate kinase resemble those of other reduced representations; non-native structures are observed with energies similar to those of the native state. The artifactual stabilization of misfolded states implies that non-native interactions play a deciding role in deviations from ideal funnel-like cooperative folding. The role of surface tension, backbone hydrogen bonding and the smooth pairwise CG landscape is discussed. Ab initio folding aside, the improved treatment of sidechain rotamers results in stability of the native state in constant temperature simulations of Trpzip, Trp-cage, and the open to closed conformational transition of adenylate kinase, illustrating the potential value of the CG force field for simulating protein complexes and transitions between well-defined structural states

    Anti-Cripto Mab inhibit tumour growth and overcome MDR in a human leukaemia MDR cell line by inhibition of Akt and activation of JNK/SAPK and bad death pathways

    Get PDF
    Doxorubicin (DOX) selection of CCRF-CEM leukaemia cell line resulted in multidrug resistance (MDR) CEM/A7R cell line, which overexpresses MDR, 1 coded P-glycoprotein (Pgp). Here, we report for the first time that oncoprotein Cripto, a founding member of epidermal growth factor-Cripto-FRL, 1-Criptic family is overexpressed in the CEM/A7R cells, and anti-Cripto monoclonal antibodies (Mab) inhibited CEM/A7R cell growth both in vitro and in an established xenograft tumour in severe combined immunodeficiency mice. Cripto Mab synergistically enhanced sensitivity of the MDR cells to Pgp substrates epirubicin (EPI), daunorubicin (DAU) and non-Pgp substrates nucleoside analogue cytosine arabinoside (AraC). In particular, the combination of anti-Cripto Mab at less than 50% of inhibition concentrations with noncytotoxic concentrations of EPI or DAU inhibited more than 90% of CEM/A7R cell growth. Cripto Mab slightly inhibited Pgp expression, and had little effect on Pgp function, indicating that a mechanism independent of Pgp was involved in overcoming MDR. We demonstrated that anti-Cripto Mab-induced CEM/A7R cell apoptosis, which was associated with an enhanced activity of the c-Jun N-terminal kinase/stress-activated protein kinase and inhibition of Akt phosphorylation, resulting in an activation of mitochondrial apoptosis pathway as evidenced by dephosphorylation of Bad at Ser136, Bcl-2 at Ser70 and a cleaved caspase-9

    From Isotropic to Anisotropic Side Chain Representations: Comparison of Three Models for Residue Contact Estimation

    Get PDF
    The criterion to determine residue contact is a fundamental problem in deriving knowledge-based mean-force potential energy calculations for protein structures. A frequently used criterion is to require the side chain center-to-center distance or the -to- atom distance to be within a pre-determined cutoff distance. However, the spatially anisotropic nature of the side chain determines that it is challenging to identify the contact pairs. This study compares three side chain contact models: the Atom Distance criteria (ADC) model, the Isotropic Sphere Side chain (ISS) model and the Anisotropic Ellipsoid Side chain (AES) model using 424 high resolution protein structures in the Protein Data Bank. The results indicate that the ADC model is the most accurate and ISS is the worst. The AES model eliminates about 95% of the incorrectly counted contact-pairs in the ISS model. Algorithm analysis shows that AES model is the most computational intensive while ADC model has moderate computational cost. We derived a dataset of the mis-estimated contact pairs by AES model. The most misjudged pairs are Arg-Glu, Arg-Asp and Arg-Tyr. Such a dataset can be useful for developing the improved AES model by incorporating the pair-specific information for the cutoff distance

    Polychlorinated dibenzo-p-dioxins, dibenzofurans and biphenyls in fish from the Netherlands: concentrations, profiles and comparison with DR CALUXยฎ bioassay results

    Get PDF
    Fish from Dutch markets were analysed for concentrations of polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (DL-PCBs) and compared with the new European maximum residue levels (MRLs), set in 2006. In a first study on 11 different fish and shellfish from various locations, concentrations of PCDD/Fs were nearly all below the MRL for PCDD/Fs [4 pg toxic equivalents (TEQ) per gram wet weight (ww)] and nearly all below 8 pg total TEQ/g ww, the new MRL for the sum of PCDD/Fs and DL-PCBs. Some samples exceeded the total TEQ MRL, such as anchovy, tuna and sea bass. Furthermore, 20 (out of 39) wild eel samples exceeded the specific MRL for eel (12 pg total TEQ/g ww), as the study revealed PCDD/F TEQ levels of 0.2-7.9 pg TEQ/g ww and total TEQ values of 0.9 to 52 pg/g ww. TEQ levels in farmed and imported eel were lower and complied with the MRLs. Smoking eel, a popular tradition in the Netherlands, only had marginal effects on PCDD/F and DL-PCB concentrations. Owing to volatilization, concentrations of lower-chlorinated PCBs were reduced to below the limit of quantification after smoking. DL-PCBs contributed 61-97% to the total TEQ in all eel samples. This also holds for other fish and shellfish (except shrimps): DL-PCB contributed (on average) from 53 (herring) to 83% (tuna) to the total TEQ. Principal-component analysis revealed distinctive congener profiles for PCDD/Fs and non-ortho PCBs for mussels, pikeperch, herring and various Mediterranean fish. The application of new TCDD toxic equivalency factors (TEFs) set by the World Health Organization in 2006 (to replace the 1997 TEFs) resulted in lower TEQ values, mainly owing to a decreased mono-ortho PCB contribution. This decrease is most pronounced for eel, owing to the relative high mono-ortho PCB concentrations in eel. Consequently, a larger number of samples would comply with the MRLs when the new TEFs are applied. The DR CALUX (R) assay may be used for screening total TEQ levels in eel, in combination with gas chromatography-high resolution mass spectrometry confirmation of suspected samples. An almost 1:1 correlation was found when the 1997 TEFs were applied, but, surprisingly, a 1.4-fold overestimation occurred with application of the 2006 TEFs
    • โ€ฆ
    corecore