76 research outputs found

    Visual Acuity and Associated Factors. The Central India Eye and Medical Study

    Get PDF
    Visual acuity is a major parameter for quality of vision and quality of life. Information on visual acuity and its associated factors in rural societies almost untouched by any industrialization is mostly non-available. It was, therefore, the purpose of our study to determine the distribution of visual acuity and its associated factors in a rural population not marked influenced by modern lifestyle. The population-based Central India Eye and Medical Study included 4711 subjects (aged 30+ years), who underwent a detailed ophthalmologic examination including visual acuity measurement. Visual acuity measurements were available for 4706 subjects with a mean age of 49.5±13.4 years (range: 30–100 years). BCVA decreased significantly (P<0.001) from the moderately hyperopic group (0.08±0.15 logMAR) to the emmetropic group (0.16±0.52 logMAR), the moderately myopic group (0.28±0.33 logMAR), the highly hyperopic group (0.66±0.62 logMAR) and finally the highly myopic group (1.32±0.92 logMAR). In multivariate analysis, BCVA was significantly associated with the systemic parameters of lower age (P<0.001), higher level of education (P<0.001), higher body stature (P<0.001) and higher body mass index (P<0.001), and with the ophthalmic parameters of more hyperopic refractive error (spherical equivalent) (P<0.001), shorter axial length (P<0.001), lower degree of nuclear cataract (P<0.001), and lower intraocular pressure (P = 0.006). The results suggest that in the rural population of Central India, major determinants of visual acuity were socioeconomic background, body stature and body mass index, age, refractive error, cataract and intraocular pressure

    Differential expression and localization of TIMP-1 and TIMP-4 in human gliomas

    Get PDF
    Studies have suggested that an imbalance of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) may contribute to the malignant phenotype of gliomas. In this study, we have undertaken a detailed analysis of expression of the TIMP family in normal human brain and malignant gliomas at both the mRNA and protein level. Reverse transcription-PCR (RT-PCR) analyses of total RNA from surgical tumour specimens revealed unique expression patterns for the 4 members of the TIMP family, with TIMP-1 and -4 showing positive and negative correlations, respectively, with glioma malignancy. By RT-PCR, TIMP-2 and TIMP-3 expression did not change with tumour grade. In situ hybridization localized TIMP-1 to glial tumour cells and also to the surrounding tumour vasculature. TIMP-4 transcripts were predominantly localized to tumour cells, though minor expression was found in vessels. Recombinant TIMP-4 reduced invasion of U251 glioma cells through Matrigel, and U87 clones overexpressing TIMP-4 showed reduced invasive capacity in vitro. TIMP-4, but not TIMP-1, blocked Membrane Type-1-MMP-mediated progelatinase-A (MMP-2) activation in human umbilical vein endothelial cells. The differential expression and localization of individual TIMPs may contribute to the pathophysiology of human malignant gliomas, particularly with regard to tumour vascularization. © 2001 Cancer Research Campaign http://www.bjcancer.co

    Blockade of VEGFR1 and 2 Suppresses Pathological Angiogenesis and Vascular Leakage in the Eye

    Get PDF
    VEGFR1 and 2 signaling have both been increasingly shown to mediate complications of ischemic retinopathies, including retinopathy of prematurity (ROP), age-related macular degeneration (AMD), and diabetic retinopathy (DR). This study evaluates the effects of blocking VEGFR1 and 2 on pathological angiogenesis and vascular leakage in ischemic retinopathy in a model of ROP and in choroidal neovascularization (CNV) in a model of AMD.H]-mannitol leakage from blood vessels into the retina. Gene expression was measured by real-time quantitative (Q)PCR.VEGFR1 and VEGFR2 expressions were up-regulated during CNV pathogenesis. Both MF1 and DC101 significantly suppressed CNV at 50 mg/kg: DC101 suppressed CNV by 73±5% (p<0.0001) and MF1 by 64±6% (p = 0.0002) in a dosage-dependent manner. The combination of MF1 and DC101 enhanced the inhibitory efficacy and resulted in an accumulation of retinal microglia at the CNV lesion. Similarly, both MF1 and DC101 significantly suppressed retinal NV in OIR at 50 mg/kg: DC101 suppressed retinal NV by 54±8% (p = 0.013) and MF1 by 50±7% (p<0.0002). MF1 was even more effective at inhibiting ischemia-induced BRB breakdown than DC101: the retina/lung leakage ratio for MF1 was reduced by 73±24%, p = 0.001 and for DC101 by 12±4%, p = 0.003. The retina/renal leakage ratio for MF1 was reduced by 52±28%, p = 0.009 and for DC101 by 13±4%, p = 0.001.Our study provides further evidence that both VEGFR1 and 2 mediate pathological angiogenesis and vascular leakage in these models of ocular disease and suggests that antagonist antibodies to these receptor tyrosine kinases (RTKs) are potential therapeutic agents

    Myeloid cells expressing VEGF and arginase-1 following uptake of damaged retinal pigment epithelium suggests potential mechanism that drives the onset of choroidal angiogenesis in mice

    Get PDF
    Whilst data recognise both myeloid cell accumulation during choroidal neovascularisation (CNV) as well as complement activation, none of the data has presented a clear explanation for the angiogenic drive that promotes pathological angiogenesis. One possibility that is a pre-eminent drive is a specific and early conditioning and activation of the myeloid cell infiltrate. Using a laser-induced CNV murine model, we have identified that disruption of retinal pigment epithelium (RPE) and Bruch's membrane resulted in an early recruitment of macrophages derived from monocytes and microglia, prior to angiogenesis and contemporaneous with lesional complement activation. Early recruited CD11b(+) cells expressed a definitive gene signature of selective inflammatory mediators particularly a pronounced Arg-1 expression. Accumulating macrophages from retina and peripheral blood were activated at the site of injury, displaying enhanced VEGF expression, and notably prior to exaggerated VEGF expression from RPE, or earliest stages of angiogenesis. All of these initial events, including distinct VEGF (+) Arg-1(+) myeloid cells, subsided when CNV was established and at the time RPE-VEGF expression was maximal. Depletion of inflammatory CCR2-positive monocytes confirmed origin of infiltrating monocyte Arg-1 expression, as following depletion Arg-1 signal was lost and CNV suppressed. Furthermore, our in vitro data supported a myeloid cell uptake of damaged RPE or its derivatives as a mechanism generating VEGF (+) Arg-1(+) phenotype in vivo. Our results reveal a potential early driver initiating angiogenesis via myeloid-derived VEGF drive following uptake of damaged RPE and deliver an explanation of why CNV develops during any of the stages of macular degeneration and can be explored further for therapeutic gain

    Cigarette Smoke-Related Hydroquinone Dysregulates MCP-1, VEGF and PEDF Expression in Retinal Pigment Epithelium in Vitro and in Vivo

    Get PDF
    Age-related macular degeneration (AMD) is the leading cause of legal blindness in the elderly population. Debris (termed drusen) below the retinal pigment epithelium (RPE) have been recognized as a risk factor for dry AMD and its progression to wet AMD, which is characterized by choroidal neovascularization (CNV). The underlying mechanism of how drusen might elicit CNV remains undefined. Cigarette smoking, oxidative damage to the RPE and inflammation are postulated to be involved in the pathophysiology of the disease. To better understand the cellular mechanism(s) linking oxidative stress and inflammation to AMD, we examined the expression of pro-inflammatory monocyte chemoattractant protein-1 (MCP-1), pro-angiogenic vascular endothelial growth factor (VEGF) and anti-angiogenic pigment epithelial derived factor (PEDF) in RPE from smoker patients with AMD. We also evaluated the effects of hydroquinone (HQ), a major pro-oxidant in cigarette smoke on MCP-1, VEGF and PEDF expression in cultured ARPE-19 cells and RPE/choroids from C57BL/6 mice.MCP-1, VEGF and PEDF expression was examined by real-time PCR, Western blot, and ELISA. Low levels of MCP-1 protein were detected in RPE from AMD smoker patients relative to controls. Both MCP-1 mRNA and protein were downregulated in ARPE-19 cells and RPE/choroids from C57BL/6 mice after 5 days and 3 weeks of exposure to HQ-induced oxidative injury. VEGF protein expression was increased and PEDF protein expression was decreased in RPE from smoker patients with AMD versus controls resulting in increased VEGF/PEDF ratio. Treatment with HQ for 5 days and 3 weeks increased the VEGF/PEDF ratio in vitro and in vivo.We propose that impaired RPE-derived MCP-1-mediated scavenging macrophages recruitment and phagocytosis might lead to incomplete clearance of proinflammatory debris and infiltration of proangiogenic macrophages which along with increased VEGF/PEDF ratio favoring angiogenesis might promote drusen accumulation and progression to CNV in smoker patients with dry AMD

    Lithium suppression of tau induces brain iron accumulation and neurodegeneration

    Get PDF
    Lithium is a first-line therapy for bipolar affective disorder. However, various adverse effects, including a Parkinson-like hand tremor, often limit its use. The understanding of the neurobiological basis of these side effects is still very limited. Nigral iron elevation is also a feature of Parkinsonian degeneration that may be related to soluble tau reduction. We found that magnetic resonance imaging T2 relaxation time changes in subjects commenced on lithium therapy were consistent with iron elevation. In mice, lithium treatment lowers brain tau levels and increases nigral and cortical iron elevation that is closely associated with neurodegeneration, cognitive loss and parkinsonian features. In neuronal cultures lithium attenuates iron efflux by lowering tau protein that traffics amyloid precursor protein to facilitate iron efflux. Thus, tau- and amyloid protein precursor-knockout mice were protected against lithium-induced iron elevation and neurotoxicity. These findings challenge the appropriateness of lithium as a potential treatment for disorders where brain iron is elevated (for example, Alzheimer’s disease), and may explain lithium-associated motor symptoms in susceptible patients

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    Genetic diversity across natural populations of three montane plant species from the Western Ghats, India revealed by intersimple sequence repeats

    No full text
    We analysed genetic diversity across the natural populations of three montane plant species in the Western Ghats, India; Symplocos laurina, Gaultheria fragrantissima and Eurya nitida using intersimple sequence repeat (ISSR) markers. These markers revealed genetic diversity within the populations of these plants from Nilgiri and also between two populations of S. laurina from Nilgiri and Amboli. Genetic variation within and between populations was analysed using various parameters such as total heterozygosity (HT), heterozygosity within population (HS), diversity between populations (DST), coefficient of population differentiation (GST), genetic distance (D) and gene flow (Nm). Total heterozygosity (HT) was higher for S. laurina (0.238) than for G. fragrantissima (0.172) and E. nitida (0.182). Two populations of S. laurina, separated by > 1000 km, showed a high within-population variation (53.7%) and a low gene flow (Nm = 0.447). upgma phenograms depicted a tendency of accessions to group according to their geographical locations in all the three plant species. The insight gained into the genetic structure of these plant populations might have implications in developing in situ and ex situ conservation strategies
    corecore