2,215 research outputs found

    Distance dependence of the phase signal in eddy current microscopy

    Full text link
    Atomic force microscopy using a magnetic tip is a promising tool for investigating conductivity on the nano-scale. By the oscillating magnetic tip eddy currents are induced in the conducting parts of the sample which can be detected in the phase signal of the cantilever. However, the origin of the phase signal is still controversial because theoretical calculations using a monopole appoximation for taking the electromagnetic forces acting on the tip into account yield an effect which is too small by more than two orders of magnitude. In order to determine the origin of the signal we used especially prepared gold nano patterns embedded in a non-conducting polycarbonate matrix and measured the distance dependence of the phase signal. Our data clearly shows that the interacting forces are long ranged and therefore, are likely due to the electromagnetic interaction between the magnetic tip and the conducting parts of the surface. Due to the long range character of the interaction a change in conductivity of Δσ=4,5107(Ω\Delta\sigma=4,5\cdot10^{7} (\Omegam)1)^{-1} can be detected far away from the surface without any interference from the topography

    Water diffusion in rat brain in vivo as detected at very large b values is multicompartmental

    No full text
    The diffusion-weighted signal attenuation of water in rat brain was measured with pulsed-field gradient nuclear magnetic resonance methods in a single voxel under in vivo and global ischemic conditions. The diffusion-attenuated water signal was observed in vivo at b values of 300 ms/ mu m/sup 2/ (strength of diffusion weighting) and diffusion times up to 400 ms. A series of constant diffusion time (CT) experiments with varied gradient directions and diffusion times revealed a multiexponential decay with apparent diffusion coefficients (ADC) covering two orders of magnitude from I to 0.01 mu m/sup 2//ms. In a four-exponential fit, the observed changes during global ischemia could be fully explained by changes in the relative volume fractions only with unchanged ADCs. An anisotropy of the ADC, detected at small b values, was not observed for the ADC at large b values, but for the concomitant volume fractions. An inverse Laplace Transform of the CT curves, performed with CONTIN, resulted in continuously distributed diffusion coefficients, for which the term `diffusogram' is proposed. This approach was more appropriate than a discrete exponential model with four to six components, being related to the morphology of brain tissue and its cell size distribution. On the basis of an analytical, quantitative model, it is suggested that the measured ADC at small b values reflects mainly properties of the restricting boundaries, i.e. the relative volume fractions and the extracellular tortuosity, while the intrinsic intracellular diffusion constant and the exchange time are predicted to have minor influence

    In vivo Structural Imaging of the Cerebellum, the Contribution of Ultra-High Fields

    Get PDF
    This review covers some of the contributions to date from cerebellar imaging studies performed at ultra-high magnetic fields. A short overview of the general advantages and drawbacks of the use of such high field systems for imaging is given. One of the biggest advantages of imaging at high magnetic fields is the improved spatial resolution, achievable thanks to the increased available signal-to-noise ratio. This high spatial resolution better matches the dimensions of the cerebellar substructures, allowing a better definition of such structures in the images. The implications of the use of high field systems is discussed for several imaging sequences and image contrast mechanisms. This review covers studies which were performed in vivo in both rodents and humans, with a special focus on studies that were directed towards the observation of the different cerebellar layer

    Stroking or Buzzing? A Comparison of Somatosensory Touch Stimuli Using 7 Tesla fMRI.

    Get PDF
    Studying body representations in the brain helps us to understand how we humans relate to our own bodies. The in vivo mapping of the somatosensory cortex, where these representations are found, is greatly facilitated by the high spatial resolution and high sensitivity to brain activation available at ultra-high field. In this study, the use of different stimulus types for somatotopic mapping of the digits at ultra-high field, specifically manual stroking and mechanical stimulation, was compared in terms of sensitivity and specificity of the brain responses. Larger positive responses in digit regions of interest were found for manual stroking than for mechanical stimulation, both in terms of average and maximum t-value and in terms of number of voxels with significant responses to the tactile stimulation. Responses to manual stroking were higher throughout the entire post-central sulcus, but the difference was especially large on its posterior wall, i.e. in Brodmann area 2. During mechanical stimulation, cross-digit responses were more negative than during manual stroking, possibly caused by a faster habituation to the stimulus. These differences indicate that manual stroking is a highly suitable stimulus for fast somatotopic mapping procedures, especially if Brodmann area 2 is of interest

    A comparison of in vivo 13C MR brain glycogen quantification at 9.4 and 14.1 T.

    Get PDF
    The high molecular weight and low concentration of brain glycogen render its noninvasive quantification challenging. Therefore, the precision increase of the quantification by localized (13) C MR at 9.4 to 14.1 T was investigated. Signal-to-noise ratio increased by 66%, slightly offset by a T(1) increase of 332 ± 15 to 521 ± 34 ms. Isotopic enrichment after long-term (13) C administration was comparable (≈ 40%) as was the nominal linewidth of glycogen C1 (≈ 50 Hz). Among the factors that contributed to the 66% observed increase in signal-to-noise ratio, the T(1) relaxation time impacted the effective signal-to-noise ratio by only 10% at a repetition time = 1 s. The signal-to-noise ratio increase together with the larger spectral dispersion at 14.1 T resulted in a better defined baseline, which allowed for more accurate fitting. Quantified glycogen concentrations were 5.8 ± 0.9 mM at 9.4 T and 6.0 ± 0.4 mM at 14.1 T; the decreased standard deviation demonstrates the compounded effect of increased magnetization and improved baseline on the precision of glycogen quantification
    corecore