2,462 research outputs found

    Chiral Generations on Intersecting 5-branes in Heterotic String Theory

    Full text link
    We show that there exist two 27 and one 27 bar of E6, net one D=4, N=1 chiral matter supermultiplet as zero modes localized on the intersection of two 5-branes in the E8 x E8 heterotic string theory. The smeared intersecting 5-brane solution is used via the standard embedding to construct a heterotic background, which provides, after a compactification of some of the transverse dimensions, a five-dimensional Randall-Sundrum II like brane-world set-up in heterotic string theory. As a by-product, we present a new proof of anomaly cancellation between those from the chiral matter and the anomaly inflow onto the brane without small instanton.Comment: 26 pages, 5 figures; references added, typo correcte

    Thermodynamic Properties of Holographic Multiquark and the Multiquark Star

    Full text link
    We study thermodynamic properties of the multiquark nuclear matter. The dependence of the equation of state on the colour charges is explored both analytically and numerically in the limits where the baryon density is small and large at fixed temperature between the gluon deconfinement and chiral symmetry restoration. The gravitational stability of the hypothetical multiquark stars are discussed using the Tolman-Oppenheimer-Volkoff equation. Since the equations of state of the multiquarks can be well approximated by different power laws for small and large density, the content of the multiquark stars has the core and crust structure. We found that most of the mass of the star comes from the crust region where the density is relatively small. The mass limit of the multiquark star is determined as well as its relation to the star radius. For typical energy density scale of 10GeV/fm310\text{GeV}/\text{fm}^{3}, the converging mass and radius of the hypothetical multiquark star in the limit of large central density are approximately 2.63.92.6-3.9 solar mass and 15-27 km. The adiabatic index and sound speed distributions of the multiquark matter in the star are also calculated and discussed. The sound speed never exceeds the speed of light and the multiquark matters are thus compressible even at high density and pressure.Comment: 27 pages, 17 figures, 1 table, JHEP versio

    Holographic Penta and Hepta Quark State in Confining Gauge Theories

    Full text link
    We study a new embedding solutions of D5 brane in an asymptotic AdS5×S5{}_5\times S^5 space-time, which is dual to a confining SU(Nc)SU(N_c) gauge theory. The D5 brane is wrapped on S5S^5 as in the case of the vertex of holographic baryon. However, the solution given here is different from the usual baryon vertex in the point that it couples to kk-anti-quarks and Nc+kN_c+k quarks on the opposite two points of S5S^5, the north and south poles, respectively. The total quark number of this state is preserved as NcN_c when minus one is assigned to anti-quark, then it forms a color singlet like the baryon. However, this includes anti-quarks and quarks, whose number is larger than that of the baryon. When we set as Nc=3N_c=3, we find the so called penta and hepta-quark states. We study the dynamical properties of these states by solving the vertex and string configurations for such states. The mass spectra of these states and the tension of the stretched vertex are estimated, and they are compared with that of the baryon.Comment: 24 pages, 6 figure

    Origin of symbol-using systems: speech, but not sign, without the semantic urge

    Get PDF
    Natural language—spoken and signed—is a multichannel phenomenon, involving facial and body expression, and voice and visual intonation that is often used in the service of a social urge to communicate meaning. Given that iconicity seems easier and less abstract than making arbitrary connections between sound and meaning, iconicity and gesture have often been invoked in the origin of language alongside the urge to convey meaning. To get a fresh perspective, we critically distinguish the origin of a system capable of evolution from the subsequent evolution that system becomes capable of. Human language arose on a substrate of a system already capable of Darwinian evolution; the genetically supported uniquely human ability to learn a language reflects a key contact point between Darwinian evolution and language. Though implemented in brains generated by DNA symbols coding for protein meaning, the second higher-level symbol-using system of language now operates in a world mostly decoupled from Darwinian evolutionary constraints. Examination of Darwinian evolution of vocal learning in other animals suggests that the initial fixation of a key prerequisite to language into the human genome may actually have required initially side-stepping not only iconicity, but the urge to mean itself. If sign languages came later, they would not have faced this constraint

    Rectangular Wilson Loops at Large N

    Full text link
    This work is about pure Yang-Mills theory in four Euclidean dimensions with gauge group SU(N). We study rectangular smeared Wilson loops on the lattice at large N and relatively close to the large-N transition point in their eigenvalue density. We show that the string tension can be extracted from these loops but their dependence on shape differs from the asymptotic prediction of effective string theory.Comment: 47 pages, 21 figures, 8 table

    Holographic Approach to Regge Trajectory and Rotating D5 brane

    Full text link
    We study the Regge trajectories of holographic mesons and baryons by considering rotating strings and D5 brane, which is introduced as the baryon vertex. Our model is based on the type IIB superstring theory with the background of asymptotic AdS5×S5AdS_5\times S^5. This background is dual to a confining supersymmetric Yang-Mills theory (SYM) with gauge condensate, , which determines the tension of the linear potential between the quark and anti-quark. Then the slope of the meson trajectory (αM\alpha'_{M}) is given by this condensate as αM=1/π\alpha'_{M}=1/\sqrt{\pi } at large spin JJ. This relation is compatible with the other theoretical results and experiments. For the baryon, we show the importance of spinning baryon vertex to obtain a Regge slope compatible with the one of NN and Δ\Delta series. In both cases, mesons and baryons, the trajectories are shifted to large mass side with the same slope for increasing current quark mass.Comment: 28 pages, 7 figure

    Synchronous Symmetry Breaking in Neurons with Different Neurite Counts

    Get PDF
    As neurons develop, several immature processes (i.e., neurites) grow out of the cell body. Over time, each neuron breaks symmetry when only one of its neurites grows much longer than the rest, becoming an axon. This symmetry breaking is an important step in neurodevelopment, and aberrant symmetry breaking is associated with several neuropsychiatric diseases, including schizophrenia and autism. However, the effects of neurite count in neuronal symmetry breaking have never been studied. Existing models for neuronal polarization disagree: some predict that neurons with more neurites polarize up to several days later than neurons with fewer neurites, while others predict that neurons with different neurite counts polarize synchronously. We experimentally find that neurons with different neurite counts polarize synchronously. We also show that despite the significant differences among the previously proposed models, they all agree with our experimental findings when the expression levels of the proteins responsible for symmetry breaking increase with neurite count. Consistent with these results, we observe that the expression levels of two of these proteins, HRas and shootin1, significantly correlate with neurite count. This coordinated symmetry breaking we observed among neurons with different neurite counts may be important for synchronized polarization of neurons in developing organisms

    Revisiting the S-matrix approach to the open superstring low energy effective lagrangian

    Full text link
    The conventional S-matrix approach to the (tree level) open string low energy effective lagrangian assumes that, in order to obtain all its bosonic αN{\alpha'}^N order terms, it is necessary to know the open string (tree level) (N+2)(N+2)-point amplitude of massless bosons, at least expanded at that order in α\alpha'. In this work we clarify that the previous claim is indeed valid for the bosonic open string, but for the supersymmetric one the situation is much more better than that: there are constraints in the kinematical bosonic terms of the amplitude (probably due to Spacetime Supersymmetry) such that a much lower open superstring nn-point amplitude is needed to find all the αN{\alpha'}^N order terms. In this `revisited' S-matrix approach we have checked that, at least up to α4{\alpha'}^4 order, using these kinematical constraints and only the known open superstring 4-point amplitude, it is possible to determine all the bosonic terms of the low energy effective lagrangian. The sort of results that we obtain seem to agree completely with the ones achieved by the method of BPS configurations, proposed about ten years ago. By means of the KLT relations, our results can be mapped to the NS-NS sector of the low energy effective lagrangian of the type II string theories implying that there one can also find kinematical constraints in the NN-point amplitudes and that important informations can be inferred, at least up to α4{\alpha'}^4 order, by only using the (tree level) 4-point amplitude.Comment: 34 pages, 3 figure, Submitted on Aug 4, 2012, Published on Oct 15, 201

    Generalized Weyl solutions in d=5 Einstein-Gauss-Bonnet theory: the static black ring

    Full text link
    We argue that the Weyl coordinates and the rod-structure employed to construct static axisymmetric solutions in higher dimensional Einstein gravity can be generalized to the Einstein-Gauss-Bonnet theory. As a concrete application of the general formalism, we present numerical evidence for the existence of static black ring solutions in Einstein-Gauss-Bonnet theory in five spacetime dimensions. They approach asymptotically the Minkowski background and are supported against collapse by a conical singularity in the form of a disk. An interesting feature of these solutions is that the Gauss-Bonnet term reduces the conical excess of the static black rings. Analogous to the Einstein-Gauss-Bonnet black strings, for a given mass the static black rings exist up to a maximal value of the Gauss-Bonnet coupling constant α\alpha'. Moreover, in the limit of large ring radius, the suitably rescaled black ring maximal value of α\alpha' and the black string maximal value of α\alpha' agree.Comment: 43 pages, 14 figure

    Super Weyl invariance: BPS equations from heterotic worldsheets

    Full text link
    It is well-known that the beta functions on a string worldsheet correspond to the target space equations of motion, e.g. the Einstein equations. We show that the BPS equations, i.e. the conditions of vanishing supersymmetry variations of the space-time fermions, can be directly derived from the worldsheet. To this end we consider the RNS-formulation of the heterotic string with (2,0) supersymmetry, which describes a complex torsion target space that supports a holomorphic vector bundle. After a detailed account of its quantization and renormalization, we establish that the cancellation of the Weyl anomaly combined with (2,0) finiteness implies the heterotic BPS conditions: At the one loop level the geometry is required to be conformally balanced and the gauge background has to satisfy the Hermitean Yang-Mills equations.Comment: 1+31 pages LaTeX, 5 figures; final version, discussion relation Weyl invariance and (2,0) finiteness extended, typos correcte
    corecore