3,123 research outputs found
On the evaluation of the specific heat and general off-diagonal n-point correlation functions within the loop algorithm
We present an efficient way to compute diagonal and off-diagonal n-point
correlation functions for quantum spin-systems within the loop algorithm. We
show that the general rules for the evaluation of these correlation functions
take an especially simple form within the framework of directed loops. These
rules state that contributing loops have to close coherently. As an application
we evaluate the specific heat for the case of spin chains and ladders.Comment: For publication EPJ
Spontaneous breaking of the Fermi surface symmetry in the t-J model: a numerical study
We present a variational Monte Carlo (VMC) study of spontaneous Fermi surface
symmetry breaking in the t-J model. We find that the variational energy of a
Gutzwiller projected Fermi sea is lowered by allowing for a finite asymmetry
between the x- and the y-directions. However, the best variational state
remains a pure superconducting state with d-wave symmetry, as long as the
underlying lattice is isotropic. Our VMC results are in good overall agreement
with slave boson mean field theory (SBMFT) and renormalized mean field theory
(RMFT), although apparent discrepancies do show up in the half-filled limit,
revealing some limitations of mean field theories. VMC and complementary RMFT
calculations also confirm the SBMFT predictions that many-body interactions can
enhance any anisotropy in the underlying crystal lattice. Thus, our results may
be of consequence for the description of strongly correlated superconductors
with an anisotropic lattice structure.Comment: 6 pages, 7 figures; final versio
On the evaluation of matrix elements in partially projected wave functions
We generalize the Gutzwiller approximation scheme to the calculation of
nontrivial matrix elements between the ground state and excited states. In our
scheme, the normalization of the Gutzwiller wave function relative to a
partially projected wave function with a single non projected site (the
reservoir site) plays a key role. For the Gutzwiller projected Fermi sea, we
evaluate the relative normalization both analytically and by variational
Monte-Carlo (VMC). We also report VMC results for projected superconducting
states that show novel oscillations in the hole density near the reservoir
site
A Microscopic Model of Non-Reciprocal Optical Effects in Cr_2 O_3
This manuscript deals with the question "How does light couple to an
antiferromagnetic order parameter"? For that we develop a microscopic model
that explains the non-reciprocal optical effects in centrosymmetric Cr_2 O_3.
It is shown that light can couple {\em directly} to the antiferromagnetic order
parameter. This coupling is mediated by the spin-orbit interaction and involves
an interplay between the breaking of inversion symmetry due to the
antiferromagnetic order parameter and the trigonal field contribution to the
ligand field at the Cr^{3+} ion.Comment: Accepted for publication in Phys. Rev. Let
Properties of the energetic particle distributions during the October 28, 2003 solar flare from INTEGRAL/SPI observations
Analysis of spectra obtained with the gamma-ray spectrometer SPI onboard
INTEGRAL of the GOES X17-class flare on October 28, 2003 is presented. In the
energy range 600 keV - 8 MeV three prominent narrow lines at 2.223, 4.4 and 6.1
MeV, resulting from nuclear interactions of accelerated ions within the solar
atmosphere could be observed. Time profiles of the three lines and the
underlying continuum indicate distinct phases with several emission peaks and
varying continuum-to-line ratio for several minutes before a smoother decay
phase sets in. Due to the high-resolution Ge detectors of SPI and the
exceptional intensity of the flare, detailed studies of the 4.4 and 6.1 MeV
line shapes was possible for the first time. Comparison with calculated line
shapes using a thick target interaction model and several energetic particle
angular distributions indicates that the nuclear interactions were induced by
downward-directed particle beams with alpha-to-proton ratios of the order of
0.1. There are also indications that the 4.4 MeV to 6.1 MeV line fluence ratio
changed between the beginning and the decay phase of the flare, possibly due to
a temporal evolution of the energetic particle alpha-to-proton ratio.Comment: 24 pages, 10 figures, accepted for publication by A&
Determining the underlying Fermi surface of strongly correlated superconductors
The notion of a Fermi surface (FS) is one of the most ingenious concepts
developed by solid state physicists during the past century. It plays a central
role in our understanding of interacting electron systems. Extraordinary
efforts have been undertaken, both by experiment and by theory, to reveal the
FS of the high temperature superconductors (HTSC), the most prominent strongly
correlated superconductors. Here, we discuss some of the prevalent methods used
to determine the FS and show that they lead generally to erroneous results
close to half filling and at low temperatures, due to the large superconducting
gap (pseudogap) below (above) the superconducting transition temperature. Our
findings provide a perspective on the interplay between strong correlations and
superconductivity and highlight the importance of strong coupling theories for
the characterization as well as the determination of the underlying FS in ARPES
experiments
The J_1-J_2 model revisited : Phenomenology of CuGeO_3
We present a mean field solution of the antiferromagnetic Heisenberg chain
with nearest (J_1) and next to nearest neighbor (J_2) interactions. This
solution provides a way to estimate the effects of frustration. We calculate
the temperature-dependent spin-wave velocity, v_s(T) and discuss the
possibility to determine the magnitude of frustration J_2/J_1 present in quasi
1D compounds from measurements of v_s(T). We compute the thermodynamic
susceptibility at finite temperatures and compare it with the observed
susceptibility of the spin-Peierls compound CuGeO_3. We also use the method to
study the two-magnon Raman continuum observed in CuGeO_3 above the spin-Peierls
transition.Comment: Phys. Rev.
Ordering in Two-Dimensional Ising Models with Competing Interactions
We study the 2D Ising model on a square lattice with additional non-equal
diagonal next-nearest neighbor interactions. The cases of classical and quantum
(transverse) models are considered. Possible phases and their locations in the
space of three Ising couplings are analyzed. In particular, incommensurate
phases occurring only at non-equal diagonal couplings, are predicted. We also
analyze a spin-pseudospin model comprised of the quantum Ising model coupled to
XY spin chains in a particular region of interactions, corresponding to the
Ising sector's super-antiferromagnetic (SAF) ground state. The spin-SAF
transition in the coupled Ising-XY model into a phase with co-existent SAF
Ising (pseudospin) long-range order and a spin gap is considered. Along with
destruction of the quantum critical point of the Ising sector, the phase digram
of the Ising-XY model can also demonstrate a re-entrance of the spin-SAF phase.
A detailed study of the latter is presented. The mechanism of the re-entrance,
due to interplay of interactions in the coupled model, and the conditions of
its appearance are established. Applications of the spin-SAF theory for the
transition in the quarter-filled ladder compound NaV2O5 are discussed.Comment: Minor revisions and refs. added; published version of the invited
paper in a special issue of "Low Temp. Physics
- …
