759 research outputs found
3D MAS NMR Experiment Utilizing Through-Space
We demonstrate a novel 3D NNC magic angle spinning NMR experiment that generates ¹⁵N–¹⁵N internuclear contacts in protein systems using an optimized ¹⁵N–¹⁵N proton assisted recoupling (PAR) mixing period and a ¹³C dimension for improved resolution. The optimized PAR condition permits the acquisition of high signal-to-noise 3D data that enables backbone chemical shift assignments using a strategy that is complementary to current schemes. The spectra can also provide distance constraints. The utility of the experiment is demonstrated on an M₀Aβ₁₋₄₂ fibril sample that yields high-quality data that is readily assigned and interpreted. The 3D NNC experiment therefore provides a powerful platform for solid-state protein studies and is broadly applicable to a variety of systems and experimental conditions.National Institute of Biomedical Imaging and Bioengineering (U.S.) (Grant EB-001960)National Institute of Biomedical Imaging and Bioengineering (U.S.) (Grant EB-002026
Discussion of Bar Applicants Taking Noncommunist Oath
With responses from two Bar members
High Resolution Structural Characterization of Aβ₄₂ Amyloid Fibrils by Magic Angle Spinning NMR
National Institute of Biomedical Imaging and Bioengineering (U.S.) (EB-003151)National Institute of Biomedical Imaging and Bioengineering (U.S.) (EB-001960)National Institute of Biomedical Imaging and Bioengineering (U.S.) (EB-002026
Variation between hospitals in inpatient admission practices for self-harm patients and its impact on repeat presentation
PURPOSE: Self-harm patient management varies markedly between hospitals, with fourfold differences in the proportion of patients who are admitted to a medical or psychiatric inpatient bed. The current study aimed to investigate whether differences in admission practices are associated with patient outcomes (repeat self-harm) while accounting for differences in patient case mix.
METHODS: Data came from the National Self-Harm Registry Ireland. A prospective cohort of 43,595 self-harm patients presenting to hospital between 2007 and 2012 were included. As well as conventional regression analysis, instrumental variable (IV) methods utilising between hospital differences in rates of hospital admission were used in an attempt to gain unbiased estimates of the association of admission with risk of repeat self-harm.
RESULTS: The proportion of self-harm patients admitted to a medical bed varied from 10 to 74 % between hospitals. Conventional regression and IV analysis suggested medical admission was not associated with risk of repeat self-harm. Psychiatric inpatient admission was associated with an increased risk of repeat self-harm in both conventional and IV analyses. This increased risk persisted in analyses stratified by gender and when restricted to self-poisoning patients only.
CONCLUSIONS: No strong evidence was found to suggest medical admission reduces the risk of repeat self-harm. Models of health service provision that encourage prompt mental health assessment in the emergency department and avoid unnecessary medical admission of self-harm patients appear warranted. Psychiatric inpatient admission may be associated with a heightened risk of repeat self-harm in some patients, but these findings could be biased by residual confounding and require replication
Analysis of clogging in constructed wetlands using magnetic resonance
In this work we demonstrate the potential of permanent magnet based magnetic resonance sensors to monitor and assess the extent of pore clogging in water filtration systems. The performance of the sensor was tested on artificially clogged gravel substrates and on gravel bed samples from constructed wetlands used to treat wastewater. Data indicate that the spin lattice relaxation time is linearly related to the hydraulic conductivity in such systems. In addition, within biologically active filters we demonstrate the ability to determine the relative ratio of biomass to abiotic solids, a measurement which is not possible using alternative techniques
A 140 GHz pulsed EPR/212 MHz NMR spectrometer for DNP studies
We described a versatile spectrometer designed for the study of dynamic nuclear polarization (DNP) at low temperatures and high fields. The instrument functions both as an NMR spectrometer operating at 212 MHz ([superscript 1]H frequency) with DNP capabilities, and as a pulsed-EPR operating at 140 GHz. A coiled TE[subscript 011] resonator acts as both an NMR coil and microwave resonator, and a double balanced ([superscript 1]H, [superscript 13]C) radio frequency circuit greatly stabilizes the NMR performance. A new 140 GHz microwave bridge has also been developed, which utilizes a four-phase network and ELDOR channel at 8.75 GHz, that is then multiplied and mixed to obtain 140 GHz microwave pulses with an output power of 120 mW. Nutation frequencies obtained are as follows: 6 MHz on S = 1/2 electron spins, 100 kHz on [superscript 1]H, and 50 kHz on [superscript 13]C. We demonstrate basic EPR, ELDOR, ENDOR, and DNP experiments here. Our solid effect DNP results demonstrate an enhancement of 144 and sensitivity gain of 310 using OX063 trityl at 80 K and an enhancement of 157 and maximum sensitivity gain of 234 using Gd-DOTA at 20 K, which is significantly better performance than previously reported at high fields (⩾3 T).National Institutes of Health (U.S.) (EB002804)National Institutes of Health (U.S.) (EB002026)National Institutes of Health (U.S.) (EB001965)National Institutes of Health (U.S.) (EB004866)Deutsche Forschungsgemeinschaft (Postdoctoral Fellowship
Microwave field distribution in a magic angle spinning dynamic nuclear polarization NMR probe
We present a calculation of the microwave field distribution in a magic angle spinning (MAS) probe utilized in dynamic nuclear polarization (DNP) experiments. The microwave magnetic field (B[subscript 1S]) profile was obtained from simulations performed with the High Frequency Structure Simulator (HFSS) software suite, using a model that includes the launching antenna, the outer Kel-F stator housing coated with Ag, the RF coil, and the 4 mm diameter sapphire rotor containing the sample. The predicted average B[subscript 1S] field is 13 μT/W[superscript 1/2], where S denotes the electron spin. For a routinely achievable input power of 5 W the corresponding value is γ[subscript S]B[subscript 1S] = 0.84 MHz. The calculations provide insights into the coupling of the microwave power to the sample, including reflections from the RF coil and diffraction of the power transmitted through the coil. The variation of enhancement with rotor wall thickness was also successfully simulated. A second, simplified calculation was performed using a single pass model based on Gaussian beam propagation and Fresnel diffraction. This model provided additional physical insight and was in good agreement with the full HFSS simulation. These calculations indicate approaches to increasing the coupling of the microwave power to the sample, including the use of a converging lens and fine adjustment of the spacing of the windings of the RF coil. The present results should prove useful in optimizing the coupling of microwave power to the sample in future DNP experiments. Finally, the results of the simulation were used to predict the cross effect DNP enhancement (ϵ) vs. ω[subscript 1S]/(2π) for a sample of [superscript 13]C-urea dissolved in a 60:40 glycerol/water mixture containing the polarizing agent TOTAPOL; very good agreement was obtained between theory and experiment.National Institutes of Health (U.S.) (Grant EB002804)National Institutes of Health (U.S.) (Grant EB003151)National Institutes of Health (U.S.) (Grant EB002026)National Institutes of Health (U.S.) (Grant EB001960)National Institutes of Health (U.S.) (Grant EB001035)National Institutes of Health (U.S.) (Grant EB004866)National Science Foundation (U.S.). Graduate Research Fellowshi
Air mass factor formulation for spectroscopic measurements from satellites: Application to formaldehyde retrievals from the Global Ozone Monitoring Experiment
Abstract. We present a new formulation for the air mass factor (AMF) to convert slant column measurements of optically thin atmospheric species from space into total vertical columns. Because of atmospheric scattering, the AMF depends on the vertical distribution of the species. We formulate the AMF as the integral of the relative vertical distribution (shape factor) of the species over the depth of the atmosphere, weighted by altitudedependent coefficients (scattering weights) computed independently from a radiative transfer model. The scattering weights are readily tabulated, and one can then obtain the AMF for any observation scene by using shape factors from a three dimensional (3-D) atmospheric chemistry model for the period of observation. This approach subsequently allows objective evaluation of the 3-D model with the observed vertical columns, since the shape factor and the vertical column in the model represent two independent pieces of information. We demonstrate the AMF method by using slant column measurements of formaldehyde at 346 nm from the Global Ozone Monitoring Experiment satellite instrument over North America during July 1996. Shape factors are computed with the Global Earth Observing System CHEMistry (GEOS-CHEM) global 3-D model and are checked for consistency with the few available aircraft measurements. Scattering weights increase by an order of magnitude from the surface to the upper troposphere. The AMFs are typically 20-40 % less over continents than over the oceans and are approximately half the values calculated in the absence of scattering. Model-induced errors in the AMF are estimated to be • 10%. The GEOS-CHEM model captures 50 % and 60 % of the variances in the observed slant and vertical columns, respectively. Comparison of the simulated and observed vertical columns allows assessment of model bias. 1
- …