939 research outputs found

    Status of Salerno Laboratory (Measurements in Nuclear Emulsion)

    Get PDF
    A report on the analysis work in the Salerno Emulsion Laboratory is presented. It is related to the search for nu_mu->nu_tau oscillations in CHORUS experiment, the calibrations in the WANF (West Area Neutrino Facility) at Cern and tests and preparation for new experiments.Comment: Proc. The First International Workshop of Nuclear Emulsion Techniques (12-24 June 1998, Nagoya, Japan), 15 pages, 11 figure

    Efficient Resolution of Anisotropic Structures

    Get PDF
    We highlight some recent new delevelopments concerning the sparse representation of possibly high-dimensional functions exhibiting strong anisotropic features and low regularity in isotropic Sobolev or Besov scales. Specifically, we focus on the solution of transport equations which exhibit propagation of singularities where, additionally, high-dimensionality enters when the convection field, and hence the solutions, depend on parameters varying over some compact set. Important constituents of our approach are directionally adaptive discretization concepts motivated by compactly supported shearlet systems, and well-conditioned stable variational formulations that support trial spaces with anisotropic refinements with arbitrary directionalities. We prove that they provide tight error-residual relations which are used to contrive rigorously founded adaptive refinement schemes which converge in L2L_2. Moreover, in the context of parameter dependent problems we discuss two approaches serving different purposes and working under different regularity assumptions. For frequent query problems, making essential use of the novel well-conditioned variational formulations, a new Reduced Basis Method is outlined which exhibits a certain rate-optimal performance for indefinite, unsymmetric or singularly perturbed problems. For the radiative transfer problem with scattering a sparse tensor method is presented which mitigates or even overcomes the curse of dimensionality under suitable (so far still isotropic) regularity assumptions. Numerical examples for both methods illustrate the theoretical findings

    UAV-spray application in vineyards: Flight modes and spray system adjustment effects on canopy deposit, coverage, and off-target losses

    Get PDF
    Improvements in the spray application of plant protection products enhance agricultural sustainability by reducing environmental contamination, but by increasing food quality and human safety. Currently, Unmanned Aerial Vehicles (UAVs) are raising interest in spray applications in 3D crops. However, operational configurations of UAV-spray systems need further investigation to maximise the deposition in the canopy and minimise the off-target losses. Our experimental research focused on investigating the effects on the canopy spray deposition and coverage due to different UAV-spray system configurations. Twelve configurations were tested under field conditions in an experimental vineyard (cv. Barbera), derived from the combination of different UAV flight modes (band and broadcast spray applications), nozzle types (conventional and air inclusion), and UAV cruise speeds (1 and 3 m s-1). Also, the best treatment, among those tested, by using the UAV-spray system and a traditional airblast sprayer were compared. The data was analysed by testing the effects of the three operational parameters and their two- and three-way interactions by means of linear mixed models. The results indicated that the flight mode deeply affects spray application efficiency. Compared to the broadcast spray modes, the band spray mode was able to increase the average canopy deposition from 0.052 to 0.161 ÎĽL cm-2 (+ 309 %) and reduce the average ground losses from 0.544 to 0.246 ÎĽL cm-2 (- 54 %). The conventional airblast sprayer, operated at a low spray application rate, showed higher canopy coverage and lower ground losses in comparison to the best UAV-spray system configuration

    Influence of nanoencapsulated lutein on acetylcholinesterase activity: In vitro determination, kinetic parameters, and in silico docking simulations

    Get PDF
    Lutein is a bioactive found in dark leafy vegetables that may be used as a nutraceutical agent in foodstuff and an inhibitor of key enzymes of the human body such as those involved in the cholinergic system. However, its high hydrophobicity leads to low bioavailability and must be overcome if lutein is to be added in foods. The objective of this study was to evaluate the influence of nanoencapsulated lutein in the activity of the acetylcholinesterase enzyme. The in vitro study was carried out using water in order to evaluate the impact of encapsulation on the hydrophilicity of lutein. In vitro assays showed that lutein, both free and nanoencapsulated, presented a mixedtype inhibition behavior, and encapsulated lutein was able to inhibit acetylcholinesterase activity even in an aqueous medium. Inhibition was also showed by the in silico docking results which show that lutein interacted with the pocket region of the enzyme.info:eu-repo/semantics/publishedVersio

    Prospect for Charge Current Neutrino Interactions Measurements at the CERN-PS

    Full text link
    Tensions in several phenomenological models grew with experimental results on neutrino/antineutrino oscillations at Short-Baseline (SBL) and with the recent, carefully recomputed, antineutrino fluxes from nuclear reactors. At a refurbished SBL CERN-PS facility an experiment aimed to address the open issues has been proposed [1], based on the technology of imaging in ultra-pure cryogenic Liquid Argon (LAr). Motivated by this scenario a detailed study of the physics case was performed. We tackled specific physics models and we optimized the neutrino beam through a full simulation. Experimental aspects not fully covered by the LAr detection, i.e. the measurements of the lepton charge on event-by-event basis and their energy over a wide range, were also investigated. Indeed the muon leptons from Charged Current (CC) (anti-)neutrino interactions play an important role in disentangling different phenomenological scenarios provided their charge state is determined. Also, the study of muon appearance/disappearance can benefit of the large statistics of CC muon events from the primary neutrino beam. Results of our study are reported in detail in this proposal. We aim to design, construct and install two Spectrometers at "NEAR" and "FAR" sites of the SBL CERN-PS, compatible with the already proposed LAr detectors. Profiting of the large mass of the two Spectrometers their stand-alone performances have also been exploited.Comment: 70 pages, 38 figures. Proposal submitted to SPS-C, CER

    Search for spontaneous muon emission from lead nuclei

    Full text link
    We describe a possible search for muonic radioactivity from lead nuclei using the base elements ("bricks" composed by lead and nuclear emulsion sheets) of the long-baseline OPERA neutrino experiment. We present the results of a Monte Carlo simulation concerning the expected event topologies and estimates of the background events. Using few bricks, we could reach a good sensitivity level.Comment: 12 pages, 4 figure

    New results from the NA57 experiment

    Full text link
    We report results from the experiment NA57 at CERN SPS on hyperon production at midrapidity in Pb-Pb collisions at 158 AA GeV/cc and 40 AA GeV/cc. Λ\Lambda, Ξ\Xi and Ω\Omega yields are compared with those from the STAR experiment at the higher energy of the BNL RHIC. Λ\Lambda, Ξ\Xi, Ω\Omega\ and preliminary KS0K_S^0 transverse mass spectra are presented and interpreted within the framework of a hydro-dynamical blast wave model.Comment: 8 pages, 3 figures, contribution to the proceedings of The XXXVIIIth Rencontres de Moriond "QCD and High Energy Hadronic Interactions
    • …
    corecore