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A B S T R A C T

Lutein is a bioactive found in dark leafy vegetables that may be used as a nutraceutical agent in foodstuff and an
inhibitor of key enzymes of the human body such as those involved in the cholinergic system. However, its high
hydrophobicity leads to low bioavailability and must be overcome if lutein is to be added in foods. The objective
of this study was to evaluate the influence of nanoencapsulated lutein in the activity of the acetylcholinesterase
enzyme. The in vitro study was carried out using water in order to evaluate the impact of encapsulation on the
hydrophilicity of lutein. In vitro assays showed that lutein, both free and nanoencapsulated, presented a mixed-
type inhibition behavior, and encapsulated lutein was able to inhibit acetylcholinesterase activity even in an
aqueous medium. Inhibition was also showed by the in silico docking results which show that lutein interacted
with the pocket region of the enzyme.

1. Introduction

Lutein is a xanthophyll carotenoid that has attracted the attention of
the food industry due to its various biological properties such as anti-
oxidant, anti-inflammatory, and neuroprotective effects. It is not syn-
thesized by the organism and all lutein present in the body must come
from dietary sources. The main natural sources of lutein are dark leafy
vegetables, most notably spinach and kale (Alves-Rodrigues & Shao,
2004; Kim, Clark, Park, Lee, & Fernandez, 2012; Li, Turner, &
Brautigan, 2015). It is found accumulated in the macular region of the
retina and is involved in the protection of the photoreceptors against
oxidative damage (Kim et al., 2012; Lakshminarayana et al., 2008).
Lutein deficiency is associated with cases of degenerative macular,
retinal inflammatory reaction, and oxidative stress (Kim et al., 2012).

Although the use of lutein as a supplement or an ingredient in nu-
traceutical foods is increasing, lutein presents some drawbacks such as
its low stability and especially its hydrophobicity. The latter is a major
problem for the industrial use of lutein since most foods are water-
based and also because bioavailability is greatly decreased when pure

lutein is orally consumed (Sant’Anna, V., Gurak, Marczak, & Tessaro,
2013; Ye, Lei, Wang, & Zhao, 2017). Solid dispersions have demon-
strated the ability to improve the bioavailability and water affinity of
food-related bioactive substances such as curcumin and betacarotene
(Frizon, Oliveira, Maria, Lina, & Maldonado, 2013; Gangurde et al.,
2015; Gul et al., 2015). It has been successfully applied to non-food
drugs like felodipine (Karavas, Ktistis, Xenakis, & Georgarakis, 2006),
loratadine (Frizon et al., 2013), and carbamazepine (Sethia &
Squillante, 2004) demonstrating the versatility of this approach. Re-
cently, lutein was encapsulated by the solid dispersion method (Silva,
Geiss, et al., 2017, Silva, Silva, et al., 2017) yielding nanoparticles with
uniform sizes and considerable gains in water affinity. Encapsulated
lutein improved the memory of mice without causing inflammatory
damage per se, which is valuable information due to concerns with the
safety of adding nanomaterials to foodstuff.

There has been a search for natural compounds that could act as
acetylcholinesterase (AChE) inhibitors mainly because it is believed
that the damage to the cholinergic system is closely related to brain
dysfunctions such as affective disorders, depression, schizophrenia and
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delirium (Contestabile, 2011), memory loss in ageing (Gallagher &
Colombo, 1995), and Parkinson's disease (Ventura et al., 2010). In the
case of Alzheimer's disease (AD), the Cholinergic Hypothesis is the most
accepted theory (Järvinen, Vuorela, Hatakka, & Fallarero, 2011; Motta
et al., 2016; Vandeput et al., 2015), stating that the loss of cholinergic
function contributes to the decrease in cognitive activity associated
with AD (Terry & Buccafusco, 2003; Viegas Junior, Bolzani, Furlan,
Fraga, & Barreiro, 2004). The cholinergic hypothesis of learning has
driven drug development for the treatment of AD and other types of
dementia. Cholinergic inhibitors have presented promising results
(Contestabile, 2011; Hornick et al., 2008; Motta et al., 2016), and drugs
such as tacrine, donepezil, rivastigmine, and galantamine were ap-
proved by the United States Food and Drug Administration (FDA) as
AChE inhibitors. The substances have been showing modest improve-
ments in patients with early stages of AD, and there is a need for ef-
fective drugs with fast penetration into the central nervous system, long
duration, and low toxicity that act as AChE inhibitors (Contestabile,
2011; Hornick et al., 2008; Motta et al., 2016).

Although the efficacy of free lutein to inhibit the action of AChE is
well-studied, the effects of nanoencapsulation are still to be determined.
Also, there is a need to investigate if encapsulated lutein would inhibit
the enzyme in aqueous media (without good lutein solvents such as
ethanol), which could represent an improvement in nutraceutical food
development. The objective of this study was to assess the action of
lutein-loaded nanoparticles on the acetylcholinesterase enzyme using in
vitro experiments and the interaction with the enzyme using in silico
docking simulations.

2. Materials and methods

2.1. Material

Lutein (90% purity, kindly donated by Pincredit Bio-tech Co.),
polyvinylpyrrolidone (PVP, 40,000 g·mol−1, Sigma-Aldrich), Tween 80
(Dinâmica), and ethanol (99.5%, Neon) were used to prepare the na-
noparticles. It is worth noting that both PVP and Tween 80 are con-
sidered as food safe additives. Ethanol was also used to prepare the free
lutein solutions for the in vitro tests. The reagents used for the acet-
ylcholinesterase (AChE) activity were 5′,5-dithiobis (2-nitrobenzoic
acid) (DTNB, 98%, Sigma-Aldrich), potassium phosphate buffer (TFK)
with a pH of 7.5 (99.9%, Neon), and acetylthiocholine (ASCh) (Sigma-
Aldrich, 99%). The enzyme was obtained from the homogenization of
rat brains in tris(hydroxymethyl)aminomethane hydrochloride (Tris-
HCl, 50Mm, pH 7.4, 99%, Dinâmica) at 1:10 (brain:Tris-HCl mass
proportion) that was kindly donated by the Federal University of Santa
Maria under the Ethics Committee Protocol no. 2729/2014-GRE.

2.2. Lutein-loaded nanoparticle production and characterization

Nanoparticles were produced using the methodology described in
detail bySilva, Geiss, et al. (2017) and Silva, Silva, et al. (2017). Briefly,
PVP (0.360 g) was dissolved in ethanol (22.5mL) under gentle stirring
for 1 minute. After, Tween 80 (0.045 g) and lutein (0.045 g) were added
and mixed for another minute. The solution was then sonicated (Fisher
Scientific, 120W, 1/8′ probe) for 5 minutes under a pulsed regime (30
seconds on and 10 seconds off) in an ice bath. Solvent was then eva-
porated in an air circulation oven at 40 °C for 24 h protected from light.

The thermal properties of the nanoparticles were investigated by
Differential Scanning Calorimetry (DSC, Perkin Elmer 4000). Samples
were accommodated in sealed aluminum pans under a nitrogen flow
(50mL·min−1) and heated from 20 to 360 °C at 20 °C·min−1. Fourier
Transform Infrared (FTIR) spectra were acquired using a Frontier
Perkin Elmer equipment in potassium bromide pellets, with a resolution
of 2 cm−1 from 4000 to 400 cm−1 with 32 cumulative scans (peaks
were normalized to allow comparison). For DSC and FTIR experiments,
all samples were simultaneously stored in a vessel protected from light

(25 °C and 60% relative humidity) for 7 days before analyses in order to
avoid the influence of adsorbed air moisture. Physical mixtures of lutein
and PVP were obtained by manually mixing them in a glass vessel in
order to qualitatively highlight the differences between actual en-
capsulation and simple mixture. X-ray diffraction analyses (XRD,
Bruker, D8 Advance) were carried out from 3° to 60° (2θ) at 5.9°·min−1

using Cu Kα radiation generated at 40 KV and 35mA. Transmission
Electron Microscopy (TEM; JEOL model JEM 2100, 200 kV) was used to
evaluate the nanoparticles morphology. Diluted samples were dripped
onto 300 mesh parlodium-covered copper grids. The interaction in-
tensity (as defined by Karavas et al. (2006)) between PVP and lutein
was investigated by UV–Vis spectroscopy (Ocean Optics, model USB-
650-UV–VIS Red Tide) at 446 nm. Specified amounts of PVP were
added to a lutein ethanolic solution (0.1 mg·mL−1) and the absorbance
was recorded. The interaction intensity (F) was calculated by Eq. (1),
where A is the absorbance of the PVP-lutein ethanolic solution and A0 is
the absorbance of the lutein ethanolic solution.

= −F A A
A

(%) 100 0

0 (1)

2.3. AChE activity assay

Adult rats were anesthetized and sacrificed, then their brains were
removed and homogenized in Tris-HCl, 50Mm, pH 7.4, 1:10 (wt/vol).
The homogenized solution was centrifuged at 10,000 rpm for 10 min-
utes, and the supernatant (S1) was used for enzymatic assays. Three
different systems were prepared to evaluate the influence of lutein on
the activity of acetylcholinesterase (AChE): (1) water dispersion of lu-
tein-loaded nanoparticles; (2) water dispersion of lutein; and (3) lutein
in ethanol (at the concentration used, ethanol did not inhibit AChE
activity per se). All systems were prepared in the following concentra-
tions: 100, 200, and 300 µM. Also, the water dispersion of PVP was
tested at the same higher lutein concentration (300 µM) to verify the per
se effect of PVP. Free lutein was evaluated in ethanol because it was not
possible to dissolve it in water as expected due to its high hydrophobic
nature. Nanoparticles were dispersed in water to determine if this
compound would present activity even in the presence of a poor lutein
solvent (water).

The colorimetric methodology used was previously described by
Ellman, Courtney, Andres, and Featherstone (1961) and modified by
Pereira, Adams, and Silva (2004). The assay medium contained a final
concentration of 1.05mM DTNB − 5′,5-dithiobis (2-nitrobenzoic acid),
24mM potassium phosphate buffer (pH=7.5), and 75 µL of super-
natant solution (S1). The product of the reaction was determined by
adding 0.84mM of acetyltiocholine (ASCh), and the reaction rate was
measured by the increase in absorbance at 412 nm for 3 minutes every
30 seconds using a UV–Vis spectrophotometer (OceanOptics model
USB650). The inhibition rate was determined using Eq. (2), where 13.6
is the molar extinction coefficient, 0.075 is the volume of supernatant
solution (S1), Δ absorbance is the absorbance variation per minute.

⎛
⎝

⎞
⎠

=Reaction rate mol
L

absorbance
. h

Δ
13.6Â·0.075 (2)

2.4. Reaction kinetics

Kinetics parameter determination was carried out using four acet-
ylthiocholine concentrations (0.8, 0.4, 0.2, 0.1, and 0mM) and two
concentrations of lutein (200 and 300 µM), as follows: (1) water dis-
persion of lutein-loaded nanoparticles; (2) water dispersion of lutein;
and (3) lutein in ethanol. The inhibition constant of the enzyme-sub-
strate-inhibitor complex (Ki) was obtained through the Lineweaver-
Burk methodology using Prism GraphPad 5.0 software.
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2.5. Docking simulations using AutoDock Vina

Lutein 2D structure preparation and 3D structure optimization were
performed using Marvin Sketch 16.4 software (www.chemaxon.com).
AutoDockTools 1.5.2 (ADT) was then used to convert the 3D structure
of lutein to the PDBQT file format required for docking. ADT performs
several preparation steps including merging non-polar hydrogens,
adding Gasteiger charges, and setting up rotatable bonds. The AChE X-
ray crystal structure (PDB: 5FKJ) used was obtained from the Protein
Data Bank (PDB) (http://www.rcsb.org). The co-crystallized ligand was
extracted from the PDB file and ADT was used to assign polar hydrogens
and Gasteiger charges, as well as save the AChE structure in the re-
quired PDBQT file format. Autodock Vina was then used to perform
molecular docking in a selected grid area that encompassed the com-
plete binding site, presenting the following parameters: center X, Y, and
Z coordinates of 15.5, −20, and 93.2, respectively; grid size XYZ di-
mensions of 30 by 30 by 30 Å; and an exhaustiveness of 16 (Hashmi &
Al-Salam, 2015). The conformational cluster analysis based on esti-
mated free energy calculations was carried out for screening the best
ligand–protein binding complex. Docking simulations were performed
in an AMD Opteron 6128 processor computer. All figures with structure
representations were prepared using PyMOL (The PyMOL Molecular
Graphics System, Version 1.3, Schrödinger, LLC).

2.6. Statistical analyses

The interaction intensity (F) procedure was carried out in triplicate
and results are presented as mean ± standard deviation. One-way
ANOVA was performed to investigate significant differences among
treatments in the in vitro experiments. Tukey’s post hoc test was se-
lected to identify the pairs of means that differ from each other.
Analyses were conducted in duplicate (4–6 repetitions per group) using
GraphPad Prism 5 software with a 5% significance level.

3. Results and discussion

3.1. Nanoparticles characterization

Fig. 1 presents images of lutein-loaded nanoparticles in water, free
lutein in water, and free lutein dissolved in ethanol. Morphological
(Transmission Electron Microscopy) and physicochemical (X-ray dif-
fraction, FTIR spectra and DSC thermograms are presented in Fig. 2.
Figs. S1 and S2 (Supplementary Material) present the FTIR and DSC

results, respectively, of physical mixtures of PVP and lutein in different
proportions. Table S1 (Supplementary Material) presents the enthalpy
involved in the water loss for PVP, lutein-loaded nanoparticles, and the
lutein-PVP physical mixture. Enthalpies were calculated based on the
mass proportion of lutein and PVP in the nanoparticles and the physical
mixture (10%wt lutein concentration).

Nanoparticles with diameters from 50 to 200 ƞm were observed in
the microscopy images (Fig. 2a) presenting fairly spherical morphology.
When dispersed in water, the nanoparticles formed a colloidally stable
dispersion, as may be seen in Fig. 1a, which is very similar to the lutein
ethanolic solution in Fig. 1c (it is worth noting that lutein and PVP are
highly soluble in ethanol). On the other hand, when dispersed in water,
lutein formed coarse agglomerates which were prone to precipitate.

The Differential Scanning Calorimetry of lutein showed an exo-
thermic peak at 112 °C which is related to the degradation of its
structure (Miguel, Martín, Mattea, & Cocero, 2008). An endothermic
peak around 66 °C was detected for free lutein (Fig. 2d). This peak was
also visible in the physical mixture but absent in the lutein-loaded na-
noparticles. This fact is indicative of the efficient encapsulation of
compounds inside the encapsulation matrix (Dandekar, Jain, Patil,
Dhumal, & Tiwari, 2010; Mohan, Gupta, Jaggi, & Chauhan, 2010; da
Silva-Buzanello et al., 2016; Yallapu, Jaggi, & Chauhan, 2010). The PVP
thermogram showed a large endothermic peak caused by water loss
(Paradkar, Ambike, Jadhav, & Mahadik, 2004) with an associated en-
thalpy of 314 J·g−1. The same peak is visible in the nanoparticles and
the physical mixture samples, as expected. In the case of the physical
mixture, the enthalpy is slightly higher probably because of the en-
dothermic peak associated with free lutein around 66 °C (as indicated in
Fig. 2d). The enthalpy of evaporation was found to decrease in the case
of the nanoparticles sample but not in the physical mixture, even
considering that all samples present the same mass proportion of PVP
and lutein. This may be caused by the interaction through hydrogen
binding between carbonyl from PVP and hydroxyl from lutein in the
nanoparticles. Previous works (Silva, Geiss, et al., 2017, Silva, Silva,
et al., 2017) have reported a decrease in the evaporation enthalpy for
nanoparticles with increasing lutein concentrations.

The XRD analysis of lutein showed two peaks at approximately 20
and 24° which are characteristic of crystalline structures (Fig. 2b). The
PVP diffractogram showed no peaks, which is typical of amorphous
materials. The same is valid for the nanoparticles and the physical
mixture, probably due to the low concentration of lutein in the sample.
The FTIR spectra of pure lutein presented its characteristic groups at
2850 and 2920 cm−1 (CH2 and CH3 stretching vibrations), 1044 cm−1

(a) (b) (c)
Fig. 1. Images of (a) lutein-loaded nanoparticles in water, (b) free lutein in water, and (c) free lutein in ethanol (all samples were prepared at 500mM of lutein).
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(CH group), 1371 cm−1 (dimethyl group) and 3435 cm−1 (hydroxyl
group). The CeH out of the plane bending vibration was present in
lutein at 979 and 833 cm−1 (Ranganathan, Hindupur, & Vallikannan,
2016; Silva, Geiss, et al., 2017, Silva, Silva, et al., 2017). Although
many absorption bands of lutein overlapped with those of PVP and
Tween 80, the absorption band at 2850 cm−1 is present in lutein and
physical mixture spectra, while it was attenuated in the nanoparticles.
This is indicative that lutein is embedded inside the nanoparticles.

FTIR spectra, DSC thermograms, TEM images and the X-Ray dif-
fraction patterns together represent a strong indicative that en-
capsulation was carried out successfully.

Fig. 3 presents the interaction intensity factor (F) between lutein
and PVP for different mass proportions.

The interaction assay was made using ethanol, which is the same
solvent used to obtain the nanoparticles. This means that results in-
dicate the behavior of PVP and lutein during the encapsulating process

(a) (b)

(c)

(d)

Fig. 2. Characterization results of the lutein-loaded nanoparticles.
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(Silva et al., 2017). It is possible to observe that there was an increase in
the interaction intensity when decreasing the lutein concentration. Al-
though a steady increase in the interaction was observed in the range of
lutein:PVP ratio, the proportion 8:1 was chosen because it represented
an increase in the interaction factor when compared to lower ratio
studied. One possible mechanism for the formation of the particles was
suggested by Zhao and coauthors (Zhao, Cheng, Jiang, Yao, & Han,
2014) involving the formation of hydrogen bonds between lutein hy-
droxyl groups and PVP carbonyl groups. The formation of such bonds
involving carbonyl groups from the same PVP chain could lead to a
crosslinked structure which may precipitate from the solvent forming
the nanoparticles with the aid of the sonication device. The system is
further stabilized by the presence of Tween 80, which is a strong and
high HLB (hydrophilic-lipophilic balance) emulsifier.

3.2. AChE activity assay and reaction kinetics

Fig. 4 presents the AChE activity in rat brains for free and en-
capsulated lutein. Fig. 5 presents the Michaelis-Menten substrate com-
petition assays for encapsulated and pure lutein.

The AChE activity was significantly inhibited at 200 and 300 µM for
both free lutein and lutein-loaded nanoparticles. For 200 µM, the ac-
tivity differed for each, as demonstrated by Tukey’s test. It is worth
noting that lutein-loaded nanoparticles presented inhibition even when
dispersed in water, without the aid of any other solvent such as ethanol.
Since lutein is poorly soluble in water, this indicates that the en-
capsulation was able to improve the water affinity of lutein. At 300 µM,

AChE activity was statistically the same for free lutein and nano-
particles (p < 0.001 when compared to the control group). PVP per se
did not alter AChE activity (data not shown in Fig. 5).

Regarding nanoparticles, Silva, Geiss, et al., 2017, Silva, Silva, et al.,
2017 have applied lutein nanoparticles for enhancing the memory of
mice and verified that 1.5 and 10mg·kg−1 were able to cause this ef-
fect. As AChE is related to memory activity and cognition, the effect of
increased memory of the mice may be related to the activity of AChE
during the longer actuation time of ACh, which is a neurotransmitter
and substrate of AChE.

The Michaelis-Menten assays demonstrated that free lutein and lu-
tein-loaded nanoparticles were able to decrease the AChE activity when
compared to the control (H2O curve). The Lineweaver-Burk metho-
dology indicated that both samples presented inhibition of competitive
mixed-type, with Ki values of 265 µM and 262 µM, respectively. López,
Campoy, Pascual-Villalobos, Muñoz-Delgado, and Vidal (2015) studied
the inhibition of AChE activity of the electric eel by monoterpenoids
and phenylpropanoids, finding that these compounds may be con-
sidered weaker inhibitors than known alkaloids such as galanthamine.
The essential oil of Salvia lavandulaefolia and its main constituents (α-
pinene, 1,8-cineole, and camphor) were found to be uncompetitive
reversible inhibitors for the activity of human erythrocyte AChE.

3.3. In silico docking

In silico docking was implemented in order to understand the pos-
sible mechanism of action of to evaluate the possible interactions be-
tween lutein and on the enzyme AChE. Fig. 6A shows a detailed analysis
of the predicted binding conformation of lutein, obtained using Auto-
Dock Vina docking software, while Fig. 6B presents the complete AChE
surface representation, highlighting the binding pocket.

The X-ray structure of AChE (PDB:5FKJ) selected for this docking
study presents C-547, an alkyl ammonium derivative that is a known
AChE inhibitor and which was co-crystallized with the AChE structure,
being also presented for comparison in Fig. 6 (Kharlamova et al., 2016).
This AChE structure was selected due to overall C-547 structural re-
semblance with lutein. One of the terminal hydroxyl group is predicted
to form a hydrogen bond with GLU202, deep inside the AChE binding
pocket, while the other terminal hydroxyl group is projected towards
the exterior while forming a second hydrogen bond with ARG276. The
lutein hydrophobic skeleton is predicted to occupy the elongated AChE
binding site in a similar fashion to C-547, stabilized by the formation of
hydrophobic interactions with several hydrophobic residues (Fig. 6A).
This structural analysis suggests the delivery of lutein to AChE as
probably the critical step of lutein action as an AChE inhibitor, due to
his hydrophobic nature. Once lutein is delivered it is readily accom-
modated by the also largely hydrophobic AChE binding site. A Ki value
of 24 nM for lutein AChE inhibition was also predicted by AutoDock
Vina software. This value differs from the experimental value found
above which could be explained by the fact that the docking simulation
implemented here does not take into account the chemical environment
in which the reaction takes place thus neglecting the possible inter-
ference of other molecules and the difficulty of lutein to reach AChE
binding pocket due to his hydrophobicity. Another fact is that reaction
kinetics could also influence on the experimental value of Ki. None-
theless, both experimental and docking results agreed that lutein can
act as an inhibitor of the AChE activity. Overall, a satisfactory me-
chanism prediction of AChE inhibition by lutein was predicted.

4. Conclusion

Lutein, a bioactive natural substance, was nanoencapsulated using
the solid dispersion method. The nanoparticles were evaluated in an
aqueous medium to verify if the water affinity of lutein was affected by
the encapsulation. In summary, this study demonstrated that the en-
capsulation of lutein using the solid dispersion technique was efficient

Fig. 3. Interaction intensity factor (F) between PVP and lutein.

Fig. 4. In vitro AChE activity in rat brain tissue. (NP: lutein-loaded nano-
particles; FL: free lutein). n= 4–6 animals per group, mean ± SD.; One-way
analyses of variance (ANOVA) followed by Tukey’s test; *p < 0.05,
**p < 0.01, ***p < 0.001 in comparison to the control group.
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since colloidal stability was improved. The physicochemical char-
acterization showed the formation of hydrogen bonds with PVP, leading
to the development of spherical nanometric particles. The in vitro
analyses using rat brain tissue demonstrated that both lutein and lutein-
loaded nanoparticles inhibited AChE activity in both forms. It is im-
portant to point out that there was no significant loss in activity for the
encapsulated lutein even when the assay was conducted in an aqueous
medium. The results of the kinetic study showed that both free and
encapsulated lutein had a mixed-type inhibition of the AChE activity. In
silico docking showed the anchorage of lutein to the AChE structure,
causing an inhibition of its activity and corroborating the in vitro re-
sults. Also, the AChE-lutein complex is not reported in the Protein Data
Bank (PDB), meaning that these results contribute to the understanding
of the action mechanism of lutein.
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Fig. 5. Michaelis-Menten substrate competition assays of (a) encapsulated lutein and (b) pure lutein, both for rat brain AChE activity.

Fig. 6. Predicted docked conformation of lutein with the AChE binding site. (A) Detailed representation of the AChE active site and (B) overall X-ray structure of
AChE obtained from the Protein Data Bank (PDB: 5FKJ), with docked lutein conformation (yellow color, sticks and balls representation) and co-crystallized C-547
conformation (green color, sticks and balls representation). H-bonds presented in traced yellow and main amino acid residues presented in the wire representation.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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