63 research outputs found

    Electron transport in gated InGaAs and InAsP quantum well wires in selectively-grown InP ridge structures

    Full text link
    The purpose of this work is to fabricate ribbon-like InGaAs and InAsP wires embedded in InP ridge structures and investigate their transport properties. The InP ridge structures that contain the wires are selectively grown by chemical beam epitaxy (CBE) on pre-patterned InP substrates. To optimize the growth and micro-fabrication processes for electronic transport, we explore the Ohmic contact resistance, the electron density, and the mobility as a function of the wire width using standard transport and Shubnikov-de Haas measurements. At low temperatures the ridge structures reveal reproducible mesoscopic conductance fluctuations. We also fabricate ridge structures with submicron gate electrodes that exhibit non-leaky gating and good pinch-off characteristics acceptable for device operation. Using such wrap gate electrodes, we demonstrate that the wires can be split to form quantum dots evidenced by Coulomb blockade oscillations in transport measurements.Comment: 5 pages, 4 figures, additional references and improved Fig. 4c, MSS-14 conference, submitted to Physica

    Lack of association between the Trp719Arg polymorphism in kinesin-like protein-6 and coronary artery disease in 19 case-control studies

    Get PDF

    The efficacy of student-centered instruction in supporting science learning

    No full text
    Transforming science learning through student-centered instruction that engages students in a variety of scientific practices is central to national science-teaching reform efforts. Our study employed a large-scale, randomized-cluster experimental design to compare the effects of student-centered and teacher-centered approaches on elementary school students' understanding of space-science concepts. Data included measures of student characteristics and learning and teacher characteristics and fidelity to the instructional approach. Results reveal that learning outcomes were higher for students enrolled in classrooms engaging in scientific practices through a student-centered approach; two moderators were identified. A statistical search for potential causal mechanisms for the observed outcomes uncovered two potential mediators: students'understanding of models and evidence and the self-efficacy of teachers
    corecore