1,024 research outputs found

    Differentiating patterns of violence in the family

    Get PDF
    The feasibility and prevalence of Reciprocal, Hierarchical and Paternal patterns of family aggression hypothesised by Dixon and Browne (2003) were explored within a sample of maltreating families. The psychological reports of 67 families referred to services for alleged child maltreatment that evidenced concurrent physical intimate partner violence and child maltreatment were investigated. Of these, 29 (43.3%) cases were characterised by hierarchical; 28 (41.8%) Reciprocal and 10 (14.9%) Paternal patterns. Significant differences in the form of child maltreatment perpetrated by mothers and fathers and parent dyads living in different patterns were found. In Hierarchical sub-patterns, fathers were significantly more likely to have been convicted for a violent and/or sexual offence than mothers and were significantly less likely to be biologically related to the child. The findings demonstrate the existence of the different patterns in a sample of families involved in the Child Care Protection process in England and Wales, supporting the utility of a holistic approach to understanding aggression in the family

    The catalytic subunit of the system L1 amino acid transporter (S<i>lc7a5</i>) facilitates nutrient signalling in mouse skeletal muscle

    Get PDF
    The System L1-type amino acid transporter mediates transport of large neutral amino acids (LNAA) in many mammalian cell-types. LNAA such as leucine are required for full activation of the mTOR-S6K signalling pathway promoting protein synthesis and cell growth. The SLC7A5 (LAT1) catalytic subunit of high-affinity System L1 functions as a glycoprotein-associated heterodimer with the multifunctional protein SLC3A2 (CD98). We generated a floxed Slc7a5 mouse strain which, when crossed with mice expressing Cre driven by a global promoter, produced Slc7a5 heterozygous knockout (Slc7a5+/-) animals with no overt phenotype, although homozygous global knockout of Slc7a5 was embryonically lethal. Muscle-specific (MCK Cre-mediated) Slc7a5 knockout (MS-Slc7a5-KO) mice were used to study the role of intracellular LNAA delivery by the SLC7A5 transporter for mTOR-S6K pathway activation in skeletal muscle. Activation of muscle mTOR-S6K (Thr389 phosphorylation) in vivo by intraperitoneal leucine injection was blunted in homozygous MS-Slc7a5-KO mice relative to wild-type animals. Dietary intake and growth rate were similar for MS-Slc7a5-KO mice and wild-type littermates fed for 10 weeks (to age 120 days) with diets containing 10%, 20% or 30% of protein. In MS-Slc7a5-KO mice, Leu and Ile concentrations in gastrocnemius muscle were reduced by ∼40% as dietary protein content was reduced from 30 to 10%. These changes were associated with >50% decrease in S6K Thr389 phosphorylation in muscles from MS-Slc7a5-KO mice, indicating reduced mTOR-S6K pathway activation, despite no significant differences in lean tissue mass between groups on the same diet. MS-Slc7a5-KO mice on 30% protein diet exhibited mild insulin resistance (e.g. reduced glucose clearance, larger gonadal adipose depots) relative to control animals. Thus, SLC7A5 modulates LNAA-dependent muscle mTOR-S6K signalling in mice, although it appears non-essential (or is sufficiently compensated by e.g. SLC7A8 (LAT2)) for maintenance of normal muscle mass

    Size Matters: Large Objects Capture Attention in Visual Search

    Get PDF
    Can objects or events ever capture one's attention in a purely stimulus-driven manner? A recent review of the literature set out the criteria required to find stimulus-driven attentional capture independent of goal-directed influences, and concluded that no published study has satisfied that criteria. Here visual search experiments assessed whether an irrelevantly large object can capture attention. Capture of attention by this static visual feature was found. The results suggest that a large object can indeed capture attention in a stimulus-driven manner and independent of displaywide features of the task that might encourage a goal-directed bias for large items. It is concluded that these results are either consistent with the stimulus-driven criteria published previously or alternatively consistent with a flexible, goal-directed mechanism of saliency detection

    Dimethyl sulfide production: what is the contribution of the coccolithophores?

    Get PDF

    Network model of immune responses reveals key effectors to single and co-infection dynamics by a respiratory bacterium and a gastrointestinal helminth

    Get PDF
    Co-infections alter the host immune response but how the systemic and local processes at the site of infection interact is still unclear. The majority of studies on co-infections concentrate on one of the infecting species, an immune function or group of cells and often focus on the initial phase of the infection. Here, we used a combination of experiments and mathematical modelling to investigate the network of immune responses against single and co-infections with the respiratory bacterium Bordetella bronchiseptica and the gastrointestinal helminth Trichostrongylus retortaeformis. Our goal was to identify representative mediators and functions that could capture the essence of the host immune response as a whole, and to assess how their relative contribution dynamically changed over time and between single and co-infected individuals. Network-based discrete dynamic models of single infections were built using current knowledge of bacterial and helminth immunology; the two single infection models were combined into a co-infection model that was then verified by our empirical findings. Simulations showed that a T helper cell mediated antibody and neutrophil response led to phagocytosis and clearance of B. bronchiseptica from the lungs. This was consistent in single and co-infection with no significant delay induced by the helminth. In contrast, T. retortaeformis intensity decreased faster when co-infected with the bacterium. Simulations suggested that the robust recruitment of neutrophils in the co-infection, added to the activation of IgG and eosinophil driven reduction of larvae, which also played an important role in single infection, contributed to this fast clearance. Perturbation analysis of the models, through the knockout of individual nodes (immune cells), identified the cells critical to parasite persistence and clearance both in single and co-infections. Our integrated approach captured the within-host immuno-dynamics of bacteria-helminth infection and identified key components that can be crucial for explaining individual variability between single and co-infections in natural populations

    Learning to mark: a qualitative study of the experiences and concerns of medical markers

    Get PDF
    BACKGROUND: Although there is published research on the methods markers use in marking various types of assessment, there is relatively little information on the processes markers use in approaching a marking exercise. This qualitative paper describes the preparation and experiences of general practice (GP) teachers who undertake marking a written assessment in an undergraduate medical course. METHODS: Semi-structured interviews were conducted with seven of the 16 GP tutors on an undergraduate course. The purposive sample comprised two new markers, two who had marked for a couple of years and three experienced markers. Each respondent was interviewed twice, once following a formative assessment of a written case study, and again after a summative assessment. All interviews were audio-taped and analysed for emerging themes. A respondent validation exercise was conducted with all 16 GP tutors. RESULTS: Markers had internal concerns about their ability to mark fairly and made considerable efforts to calibrate their marking. They needed guidance and coaching when marking for the first time and adopted a variety of marking styles, reaching a decision through a number of routes. Dealing with pass/fail borderline scripts and the consequences of the mark on the student were particular concerns. Even experienced markers felt the need to calibrate their marks both internally and externally CONCLUSION: Previous experience of marking appears to improve markers' confidence and is a factor in determining the role which markers adopt. Confidence can be improved by giving clear instructions, along with examples of marking. The authors propose that one method of providing this support and coaching could be by a process of peer review of a selection of papers prior to the main marking. New markers in particular would benefit from further guidance, however they are influenced by others early on in their marking career and course organisers should be mindful of this when arranging double marking

    Paleotemperature Proxies from Leaf Fossils Reinterpreted in Light of Evolutionary History

    Get PDF
    Present-day correlations between leaf physiognomic traits (shape and size) and climate are widely used to estimate paleoclimate using fossil floras. For example, leaf-margin analysis estimates paleotemperature using the modern relation of mean annual temperature (MAT) and the site-proportion of untoothed-leaf species (NT). This uniformitarian approach should provide accurate paleoclimate reconstructions under the core assumption that leaf-trait variation principally results from adaptive environmental convergence, and because variation is thus largely independent of phylogeny it should be constant through geologic time. Although much research acknowledges and investigates possible pitfalls in paleoclimate estimation based on leaf physiognomy, the core assumption has never been explicitly tested in a phylogenetic comparative framework. Combining an extant dataset of 21 leaf traits and temperature with a phylogenetic hypothesis for 569 species-site pairs at 17 sites, we found varying amounts of non-random phylogenetic signal in all traits. Phylogenetic vs. standard regressions generally support prevailing ideas that leaf-traits are adaptively responding to temperature, but wider confidence intervals, and shifts in slope and intercept, indicate an overall reduced ability to predict climate precisely due to the non-random phylogenetic signal. Notably, the modern-day relation of proportion of untoothed taxa with mean annual temperature (NT-MAT), central in paleotemperature inference, was greatly modified and reduced, indicating that the modern correlation primarily results from biogeographic history. Importantly, some tooth traits, such as number of teeth, had similar or steeper slopes after taking phylogeny into account, suggesting that leaf teeth display a pattern of exaptive evolution in higher latitudes. This study shows that the assumption of convergence required for precise, quantitative temperature estimates using present-day leaf traits is not supported by empirical evidence, and thus we have very low confidence in previously published, numerical paleotemperature estimates. However, interpreting qualitative changes in paleotemperature remains warranted, given certain conditions such as stratigraphically closely-spaced samples with floristic continuity

    On the limits of top-down control of visual selection

    Get PDF
    In the present study, observers viewed displays in which two equally salient color singletons were simultaneously present. Before each trial, observers received a word cue (e.g., the word red, or green) or a symbolic cue (a circle colored red or green) telling them which color singleton to select on the upcoming trial. Even though many theories of visual search predict that observers should be able to selectively attend the target color singleton, the results of the present study show that observers could not select the target singleton without interference from the irrelevant color singleton. The results indicate that the irrelevant color singleton captured attention. Only when the color of the target singleton remained the same from one trial to the next was selection perfect—an effect that is thought to be the result of passive automatic intertrial priming. The results of the present study demonstrate the limits of top-down attentional control

    Field of Attention for Instantaneous Object Recognition

    Get PDF
    BACKGROUND: Instantaneous object discrimination and categorization are fundamental cognitive capacities performed with the guidance of visual attention. Visual attention enables selection of a salient object within a limited area of the visual field; we referred to as "field of attention" (FA). Though there is some evidence concerning the spatial extent of object recognition, the following questions still remain unknown: (a) how large is the FA for rapid object categorization, (b) how accuracy of attention is distributed over the FA, and (c) how fast complex objects can be categorized when presented against backgrounds formed by natural scenes. METHODOLOGY/PRINCIPAL FINDINGS: To answer these questions, we used a visual perceptual task in which subjects were asked to focus their attention on a point while being required to categorize briefly flashed (20 ms) photographs of natural scenes by indicating whether or not these contained an animal. By measuring the accuracy of categorization at different eccentricities from the fixation point, we were able to determine the spatial extent and the distribution of accuracy over the FA, as well as the speed of categorizing objects using stimulus onset asynchrony (SOA). Our results revealed that subjects are able to rapidly categorize complex natural images within about 0.1 s without eye movement, and showed that the FA for instantaneous image categorization covers a visual field extending 20° × 24°, and accuracy was highest (>90%) at the center of FA and declined with increasing eccentricity. CONCLUSIONS/SIGNIFICANCE: In conclusion, human beings are able to categorize complex natural images at a glance over a large extent of the visual field without eye movement
    corecore