8,554 research outputs found

    Insulin-loaded PLGA microspheres for glucose-responsive release

    Get PDF
    Porous poly(lactic-co-glycolic acid) (PLGA) microspheres were prepared, loaded with insulin, and then coated in poly(vinyl alcohol) (PVA) and a novel boronic acid-containing copolymer [poly(acrylamide phenyl boronic acid-co-N–vinylcaprolactam); p(AAPBA-co-NVCL)]. Multilayer microspheres were generated using a layer-by-layer approach depositing alternating coats of PVA and p(AAPBA-co-NVCL) on the PLGA surface, with the optimal system found to be that with eight alternating layers of each coating. The resultant material comprised spherical particles with a porous PLGA core and the pores covered in the coating layers. Insulin could successfully be loaded into the particles, with loading capacity and encapsulation efficiencies reaching 2.83 ± 0.15 and 82.6 ± 5.1% respectively, and was found to be present in the amorphous form. The insulin-loaded microspheres could regulate drug release in response to a changing concentration of glucose. In vitro and in vivo toxicology tests demonstrated that they are safe and have high biocompatibility. Using the multilayer microspheres to treat diabetic mice, we found they can effectively control blood sugar levels over at least 18 days, retaining their glucose-sensitive properties during this time. Therefore, the novel multilayer microspheres developed in this work have significant potential as smart drug-delivery systems for the treatment of diabetes

    Geology of central western Tasmania

    Get PDF
    The Queenstown-Zeehan-Rosebery area is geologically complex. It lies on a belt of folded Ecocambrian and early Palaeozoic rocks which were deposited in the Dundas Trough, a rift structure which developed between the metamorphosed Precambrian rocks of the Cradle Mountain- Frenchmans Cap area ( Tyennan Nucleus ) to the east and the relatively unmetamorphosed Proterozoic rocks of t he Rocky Cape Geanticline to the west

    New biocompatible hydroxy double salts and their drug delivery properties

    Get PDF
    Two biocompatible hydroxy double salts (HDSs) were synthesised for the first time and loaded with active pharmaceutical ingredients. Drug release was studied from these intercalates, and sustained release observed. The HDS–drug composites were further formulated into tablets which were found to comply with pharmacopeia requirements for delayed and extended release dosage forms

    Electrosprayed Janus Particles for Combined Photo-Chemotherapy

    Get PDF
    This work is a proof of concept study establishing the potential of electrosprayed Janus particles for combined photodynamic therapy-chemotherapy. Sub-micron-sized particles of polyvinylpyrrolidone containing either an anti-cancer drug (carmofur) or a photosensitiser (rose bengal; RB), and Janus particles containing both in separate compartments were prepared. The functional components were present in the amorphous form in all the particles, and infrared spectroscopy indicated that intermolecular interactions formed between the different species. In vitro drug release studies showed that both carmofur and RB were released at approximately the same rate, with dissolution complete after around 250 min. Cytotoxicity studies were undertaken on model human dermal fibroblasts (HDF) and lung cancer (A549) cells, and the influence of light on cell death explored. Formulations containing carmofur as the sole active ingredient were highly toxic to both cell lines, with or without a light treatment. The RB formulations were non-toxic to HDF when no light was applied, and with photo-treatment caused large amounts of cell death for both A549 and HDF cells. The Janus formulation containing both RB and carmofur was non-toxic to HDF without light, and only slightly toxic with the photo-treatment. In contrast, it was hugely toxic to A549 cells when light was applied. The Janus particles are thus highly selective for cancer cells, and it is hence proposed that such electrosprayed particles containing both a chemotherapeutic agent and photosensitiser have great potential in combined chemotherapy/photodynamic therapy

    Nanofibers Fabricated Using Triaxial Electrospinning as Zero Order Drug Delivery Systems

    Get PDF
    A new strategy for creating functional trilayer nanofibers through triaxial electrospinning is demonstrated. Ethyl cellulose (EC) was used as the filament-forming matrix in the outer, middle, and inner working solutions and was combined with varied contents of the model active ingredient ketoprofen (KET) in the three fluids. Triaxial electrospinning was successfully carried out to generate medicated nanofibers. The resultant nanofibers had diameters of 0.74 ± 0.06 μm, linear morphologies, smooth surfaces, and clear trilayer nanostructures. The KET concentration in each layer gradually increased from the outer to the inner layer. In vitro dissolution tests demonstrated that the nanofibers could provide linear release of KET over 20 h. The protocol reported in this study thus provides a facile approach to creating functional nanofibers with sophisticated structural features

    Deciphering the metabolic response of Mycobacterium tuberculosis to nitrogen stress.

    Get PDF
    © 2015 John Wiley & Sons Ltd.A key component to the success of Mycobacterium tuberculosis as a pathogen is the ability to sense and adapt metabolically to the diverse range of conditions encountered in vivo, such as oxygen tension, environmental pH and nutrient availability. Although nitrogen is an essential nutrient for every organism, little is known about the genes and pathways responsible for nitrogen assimilation in M. tuberculosis. In this study we have used transcriptomics and chromatin immunoprecipitation and high-throughput sequencing to address this. In response to nitrogen starvation, a total of 185 genes were significantly differentially expressed (96 up-regulated and 89 down regulated; 5% genome) highlighting several significant areas of metabolic change during nitrogen limitation such as nitrate/nitrite metabolism, aspartate metabolism and changes in cell wall biosynthesis. We identify GlnR as a regulator involved in the nitrogen response, controlling the expression of at least 33 genes in response to nitrogen limitation. We identify a consensus GlnR binding site and relate its location to known transcriptional start sites. We also show that the GlnR response regulator plays a very different role in M. tuberculosis to that in non-pathogenic mycobacteria, controlling genes involved in nitric oxide detoxification and intracellular survival instead of genes involved in nitrogen scavenging

    Deciphering the response of Mycobacterium smegmatis to nitrogen stress using bipartite active modules.

    Get PDF
    Background The ability to adapt to environments with fluctuating nutrient availability is vital for bacterial survival. Although essential for growth, few nitrogen metabolism genes have been identified or fully characterised in mycobacteria and nitrogen stress survival mechanisms are unknown. Results A global transcriptional analysis of the mycobacterial response to nitrogen stress, showed a significant change in the differential expression of 16% of the Mycobacterium smegmatis genome. Gene expression changes were mapped onto the metabolic network using Active Modules for Bipartite Networks (AMBIENT) to identify metabolic pathways showing coordinated transcriptional responses to the stress. AMBIENT revealed several key features of the metabolic response not identified by KEGG enrichment alone. Down regulated reactions were associated with the general reduction in cellular metabolism as a consequence of reduced growth rate. Up-regulated modules highlighted metabolic changes in nitrogen assimilation and scavenging, as well as reactions involved in hydrogen peroxide metabolism, carbon scavenging and energy generation. Conclusions Application of an Active Modules algorithm to transcriptomic data identified key metabolic reactions and pathways altered in response to nitrogen stress, which are central to survival under nitrogen limiting environments
    corecore