1,617 research outputs found

    Preparation of Aligned Ultra-long and Diameter-controlled Silicon Oxide Nanotubes by Plasma Enhanced Chemical Vapor Deposition Using Electrospun PVP Nanofiber Template

    Get PDF
    Well-aligned and suspended polyvinyl pyrrolidone (PVP) nanofibers with 8 mm in length were obtained by electrospinning. Using the aligned suspended PVP nanofibers array as template, aligned ultra-long silicon oxide (SiOx) nanotubes with very high aspect ratios have been prepared by plasma-enhanced chemical vapor deposition (PECVD) process. The inner diameter (20–200 nm) and wall thickness (12–90 nm) of tubes were controlled, respectively, by baking the electrospun nanofibers and by coating time without sacrificing the orientation degree and the length of arrays. The micro-PL spectrum of SiOx nanotubes shows a strong blue–green emission with a peak at about 514 nm accompanied by two shoulders around 415 and 624 nm. The blue–green emission is caused by the defects in the nanotubes

    Iridium wire grid polarizer fabricated using atomic layer deposition

    Get PDF
    In this work, an effective multistep process toward fabrication of an iridium wire grid polarizer for UV applications involving a frequency doubling process based on ultrafast electron beam lithography and atomic layer deposition is presented. The choice of iridium as grating material is based on its good optical properties and a superior oxidation resistance. Furthermore, atomic layer deposition of iridium allows a precise adjustment of the structural parameters of the grating much better than other deposition techniques like sputtering for example. At the target wavelength of 250 nm, a transmission of about 45% and an extinction ratio of 87 are achieved

    Lectin-like bacteriocins from pseudomonas spp. utilise D-rhamnose containing lipopolysaccharide as a cellular receptor

    Get PDF
    Lectin-like bacteriocins consist of tandem monocot mannose-binding domains and display a genus-specific killing activity. Here we show that pyocin L1, a novel member of this family from Pseudomonas aeruginosa, targets susceptible strains of this species through recognition of the common polysaccharide antigen (CPA) of P. aeruginosa lipopolysaccharide that is predominantly a homopolymer of d-rhamnose. Structural and biophysical analyses show that recognition of CPA occurs through the C-terminal carbohydrate-binding domain of pyocin L1 and that this interaction is a prerequisite for bactericidal activity. Further to this, we show that the previously described lectin-like bacteriocin putidacin L1 shows a similar carbohydrate-binding specificity, indicating that oligosaccharides containing d-rhamnose and not d-mannose, as was previously thought, are the physiologically relevant ligands for this group of bacteriocins. The widespread inclusion of d-rhamnose in the lipopolysaccharide of members of the genus Pseudomonas explains the unusual genus-specific activity of the lectin-like bacteriocins

    Effects of Combined Aspirin and Clopidogrel Therapy on Cardiovascular Outcomes: A Systematic Review and Meta-Analysis

    Get PDF
    BACKGROUND: Aspirin and clopidogrel monotherapies are effective treatments for preventing vascular disease. However, new evidence has emerged regarding the use of combined aspirin and clopidogrel therapy to prevent cardiovascular events. We therefore performed a comprehensive systematic review and meta-analysis to evaluate the benefits and harms of combined aspirin and clopidogrel therapy on major cardiovascular outcomes. METHODOLOGY/PRINCIPAL FINDINGS: We systematically searched Medline, Embase, the Cochrane Central Register of Controlled Trials, reference lists of articles, and proceedings of major meetings to identify studies to fit our analysis. Eligible studies were randomized controlled trials assessing the effect of combined aspirin and clopidogrel therapy compared with aspirin or clopidogrel monotherapy. We identified 7 trials providing data with a total of 48248 patients. These studies reported 5134 major cardiovascular events, 1626 myocardial infarctions, 1927 strokes, and 1147 major bleeding events. Overall, the addition of aspirin to clopidogrel therapy as compared to single drug therapy resulted in a 9% RR reduction (95%CI, 2 to 17) in major cardiovascular events, 14% RR reduction (95%CI, 3 to 24) in myocardial infarction, 16% RR reduction (95%CI, 1 to 28) in stroke, and 62% RR increase (95%CI, 26 to 108) in major bleeding events. We also present the data as ARR to explore net value as the reduction in cardiovascular events. Overall, we observed that combined therapy yielded 1.06% decrease (95%CI, 0.23% to 1.99%) in major cardiovascular events and 1.23% increase (95%CI, 0.52% to 2.14%) in major bleeding events. CONCLUSION/SIGNIFICANCE: Although the addition of aspirin to clopidogrel resulted in small relative reductions in major cardiovascular events, myocardial infarction, and stroke, it also resulted in a relative increase in major bleeding events. In absolute terms the benefits of combined therapy, a 1.06% reduction in major cardiovascular events, does not outweigh the harms, a 1.23% increase in major bleeding events

    Betacellulin inhibits osteogenic differentiation and stimulates proliferation through HIF-1α

    Get PDF
    Cellular signaling via epidermal growth factor (EGF) and EGF-like ligands can determine cell fate and behavior. Osteoblasts, which are responsible for forming and mineralizing osteoid, express EGF receptors and alter rates of proliferation and differentiation in response to EGF receptor activation. Transgenic mice over-expressing the EGF-like ligand betacellulin (BTC) exhibit increased cortical bone deposition; however, because the transgene is ubiquitously expressed in these mice, the identity of cells affected by BTC and responsible for increased cortical bone thickness remains unknown. We have therefore examined the influence of BTC upon mesenchymal stem cell (MSC) and pre-osteoblast differentiation and proliferation. BTC decreases the expression of osteogenic markers in both MSCs and pre-osteoblasts; interestingly, increases in proliferation require hypoxia-inducible factor-alpha (HIF-α), as an HIF antagonist prevents BTC-driven proliferation. Both MSCs and pre-osteoblasts express EGF receptors ErbB1, ErbB2, and ErbB3, with no change in expression under osteogenic differentiation. These are the first data that demonstrate an influence of BTC upon MSCs and the first to implicate HIF-α in BTC-mediated proliferation

    Efficient preparation of Arabidopsis pollen tubes for ultrastructural analysis using chemical and cryo-fixation

    Get PDF
    The pollen tube (PT) serves as a model system for investigating plant cell growth and morphogenesis. Ultrastructural studies are indispensable to complement data from physiological and genetic analyses, yet an effective method is lacking for PTs of the model plant Arabidopsis thaliana. Methods: Here, we present reliable approaches for ultrastructural studies of Arabidopsis PTs, as well as an efficient technique for immunogold detection of cell wall epitopes. Using different fixation and embedding strategies, we show the amount of PT ultrastructural details that can be obtained by the different methods. Results: Dozens of cross-sections can be obtained simultaneously by the approach, which facilitates and shortens the time for evaluation. In addition to in vitro-grown PTs, our study follows the route of PTs from germination, growth along the pistil, to the penetration of the dense stylar tissue, which requires considerable mechanical forces. To this end, PTs have different strategies from growing between cells but also between the protoplast and the cell wall and even within each other, where they share a partly common cell wall. The separation of PT cell walls in an outer and an inner layer reported for many plant species is less clear in Arabidopsis PTs, where these cell wall substructures are connected by a distinct transition zone. Conclusions: The major advancement of this method is the effective production of a large number of longitudinal and cross-sections that permits obtaining a detailed and representative picture of pollen tube structures in an unprecedented way. This is particularly important when comparing PTs of wild type and mutants to identify even subtle alterations in cytoarchitecture. Arabidopsis is an excellent plant for genetic manipulation, yet the PTs, several-times smaller compared to tobacco or lily, represent a technical challenge. This study reveals a method to overcome this problem and make Arabidopsis PTs more amenable to a combination of genetic and ultrastructural analyses

    Mechanisms of Hearing Loss after Blast Injury to the Ear

    Get PDF
    Given the frequent use of improvised explosive devices (IEDs) around the world, the study of traumatic blast injuries is of increasing interest. The ear is the most common organ affected by blast injury because it is the bodyメs most sensitive pressure transducer. We fabricated a blast chamber to re-create blast profiles similar to that of IEDs and used it to develop a reproducible mouse model to study blast-induced hearing loss. The tympanic membrane was perforated in all mice after blast exposure and found to heal spontaneously. Micro-computed tomography demonstrated no evidence for middle ear or otic capsule injuries; however, the healed tympanic membrane was thickened. Auditory brainstem response and distortion product otoacoustic emission threshold shifts were found to be correlated with blast intensity. As well, these threshold shifts were larger than those found in control mice that underwent surgical perforation of their tympanic membranes, indicating cochlear trauma. Histological studies one week and three months after the blast demonstrated no disruption or damage to the intra-cochlear membranes. However, there was loss of outer hair cells (OHCs) within the basal turn of the cochlea and decreased spiral ganglion neurons (SGNs) and afferent nerve synapses. Using our mouse model that recapitulates human IED exposure, our results identify that the mechanisms underlying blast-induced hearing loss does not include gross membranous rupture as is commonly believed. Instead, there is both OHC and SGN loss that produce auditory dysfunction

    Depression and sickness behavior are Janus-faced responses to shared inflammatory pathways

    Get PDF
    It is of considerable translational importance whether depression is a form or a consequence of sickness behavior. Sickness behavior is a behavioral complex induced by infections and immune trauma and mediated by pro-inflammatory cytokines. It is an adaptive response that enhances recovery by conserving energy to combat acute inflammation. There are considerable phenomenological similarities between sickness behavior and depression, for example, behavioral inhibition, anorexia and weight loss, and melancholic (anhedonia), physio-somatic (fatigue, hyperalgesia, malaise), anxiety and neurocognitive symptoms. In clinical depression, however, a transition occurs to sensitization of immuno-inflammatory pathways, progressive damage by oxidative and nitrosative stress to lipids, proteins, and DNA, and autoimmune responses directed against self-epitopes. The latter mechanisms are the substrate of a neuroprogressive process, whereby multiple depressive episodes cause neural tissue damage and consequent functional and cognitive sequelae. Thus, shared immuno-inflammatory pathways underpin the physiology of sickness behavior and the pathophysiology of clinical depression explaining their partially overlapping phenomenology. Inflammation may provoke a Janus-faced response with a good, acute side, generating protective inflammation through sickness behavior and a bad, chronic side, for example, clinical depression, a lifelong disorder with positive feedback loops between (neuro)inflammation and (neuro)degenerative processes following less well defined triggers

    Decreased expression of dual-specificity phosphatase 9 is associated with poor prognosis in clear cell renal cell carcinoma

    Get PDF
    Background: The molecular mechanisms involved in the development and progression of clear cell renal cell carcinomas (ccRCCs) are poorly understood. The objective of this study was to analyze the expression of dual-specificity phosphatase 9 (DUSP-9) and determine its clinical significance in human ccRCCs. Methods: The expression of DUSP-9 mRNA was determined in 46 paired samples of ccRCCs and adjacent normal tissues by using real-time qPCR. The expression of the DUSP-9 was determined in 211 samples of ccRCCs and 107 paired samples of adjacent normal tissues by immunohistochemical analysis. Statistical analysis was performed to define the relationship between the expression of DUSP-9 and the clinical features of ccRCC. Results: The mRNA level of DUSP-9, which was determined by real-time RT-PCR, was found to be significantly lower in tumorous tissues than in the adjacent non-tumorous tissues (p < 0.001). An immunohistochemical analysis of 107 paired tissue specimens showed that the DUSP-9 expression was lower in tumorous tissues than in the adjacent non-tumorous tissues (p < 0.001). Moreover, there was a significant correlation between the DUSP-9 expression in ccRCCs and gender (p = 0.031), tumor size (p = 0.001), pathologic stage (p = 0.001), Fuhrman grade (p = 0.002), T stage (p = 0.001), N classification (p = 0.012), metastasis (p = 0.005), and recurrence (p < 0.001). Patients with lower DUSP-9 expression had shorter overall survival time than those with higher DUSP-9 expression (p < 0.001). Multivariate analysis indicated that low expression of the DUSP-9 was an independent predictor for poor survival of ccRCC patients. Conclusion: To our knowledge, this is the first study that determines the relationship between DUSP-9 expression and prognosis in ccRCC. We found that decreased expression of DUSP-9 is associated with poor prognosis in ccRCC. DUSP-9 may represent a novel and useful prognostic marker for ccRCC
    corecore