3,252 research outputs found
Plasma electrons above Saturn's main rings: CAPS observations
We present observations of thermal ( similar to 0.6 - 100eV) electrons observed near Saturn's main rings during Cassini's Saturn Orbit Insertion (SOI) on 1 July 2004. We find that the intensity of electrons is broadly anticorrelated with the ring optical depth at the magnetic footprint of the field line joining the spacecraft to the rings. We see enhancements corresponding to the Cassini division and Encke gap. We suggest that some of the electrons are generated by photoemission from ring particle surfaces on the illuminated side of the rings, the far side from the spacecraft. Structure in the energy spectrum over the Cassini division and A-ring may be related to photoelectron emission followed by acceleration, or, more likely, due to photoelectron production in the ring atmosphere or ionosphere
Discovery of heavy negative ions in Titan's ionosphere
Titan's ionosphere contains a rich positive ion population including organic molecules. Here, using CAPS electron spectrometer data from sixteen Titan encounters, we reveal the existence of negative ions. These ions, with densities up to similar to 100 cm similar to 3, are in mass groups of 10-30, 30-50, 50-80, 80-110, 110-200 and 200+ amu/charge. During one low encounter, negative ions with mass per charge as high as 10,000 amu/q are seen. Due to their unexpectedly high densities at similar to 950 km altitude, these negative ions must play a key role in the ion chemistry and they may be important in the formation of organic-rich aerosols (tholins) eventually falling to the surface
Magnetic signatures of plasma-depleted flux tubes in the Saturnian inner magnetosphere
Initial Cassini observations have revealed evidence for interchanging magnetic flux tubes in the inner Saturnian magnetosphere. Some of the reported flux tubes differ remarkably by their magnetic signatures, having a depressed or enhanced magnetic pressure relative to their surroundings. The ones with stronger fields have been interpreted previously as either outward moving mass-loaded or inward moving plasma-depleted flux tubes based on magnetometer observations only. We use detailed multi-instrumental observations of small and large density depletions in the inner Saturnian magnetosphere from Cassini Rev. A orbit that enable us to discriminate amongst the two previous and opposite interpretations. Our analysis undoubtedly confirms the similar nature of both types of reported interchanging magnetic flux tubes, which are plasma-depleted, whatever their magnetic signatures are. Their different magnetic signature is clearly an effect associated with latitude. These Saturnian plasma-depleted flux tubes ultimately may play a similar role as the Jovian ones
Negative ion chemistry in Titan's upper atmosphere
International audienceThe Electron Spectrometer (ELS), one of the sensors making up the Cassini Plasma Spectrometer (CAPS) revealed the existence of numerous negative ions in Titan's upper atmosphere. The observations at closest approach (not, vert, similar1000 km) show evidence for negatively charged ions up to not, vert, similar10,000 amu/q, as well as two distinct peaks at 22±4 and 44±8 amu/q, and maybe a third one at 82±14 amu/q. We present the first ionospheric model of Titan including negative ion chemistry. We find that dissociative electron attachment to neutral molecules (mostly HCN) initiates the formation of negative ions. The negative charge is then transferred to more acidic molecules such as HC3N, HC5N or C4H2. Loss occurs through associative detachment with radicals (H and CH3). We attribute the three low mass peaks observed by ELS to CN−, C3N−/C4H− and C5N−. These species are the first intermediates in the formation of the even larger negative ions observed by ELS, which are most likely the precursors to the aerosols observed at lower altitudes
Detection of gait initiation Failure in Parkinson's disease based on wavelet transform and Support Vector Machine
© 2017 IEEE. Gait initiation Failure (GIF) is the situation in which patients with Parkinson's disease (PD) feel as if their feet get 'stuck' to the floor when initiating their first steps. GIF is a subtype of Freezing of Gait (FOG) and often leads to falls and related injuries. Understanding of neurobiological mechanisms underlying GIF has been limited by difficulties in eliciting and objectively characterizing such gait phenomena in the clinical setting. Studies investigating the effects of GIF on brain activity using EEG offer the potential to study such behavior. In this preliminary study, we present a novel methodology where wavelet transform was used for feature extraction and Support Vector Machine for classifying GIF events in five patients with PD and FOG. To deal with the large amount of EEG data, a Principal Component Analysis (PCA) was applied to reduce the data dimension from 15 EEG channels into 6 principal components (PCs), retaining 93% of the information. Independent Component Analysis using Entropy Bound Minimization (ICA-EBM) was applied to 6 PCs for source separation with the aim of improving detection ability of GIF events as compared to the normal initiation of gait (Good Starts). The results of this analysis demonstrated the correct identification of GIF episodes with an 83.1% sensitivity, 89.5% specificity and 86.3% accuracy. These results suggest that our proposed methodology is a promising non-invasive approach to improve GIF detection in PD and FOG
Plasma Perturbations and Cosmic Microwave Background Anisotropy in the Linearly Expanding Milne-like Universe
We expose the scenarios of primordial baryon-photon plasma evolution within
the framework of the Milne-like universe models. Recently, such models find a
second wind and promise an inflation-free solution of a lot of cosmological
puzzles including the cosmological constant one. Metric tensor perturbations
are considered using the five-vectors theory of gravity admitting the Friedmann
equation satisfied up to some constant. The Cosmic Microwave Background (CMB)
spectrum is calculated qualitatively.Comment: 20 page
Deriving the bulk properties of solar wind electrons observed by Solar Orbiter: A preliminary study of electron plasma thermodynamics
We demonstrate the calculation of solar wind electron bulk parameters from recent observations by Solar Wind Analyser Electron Analyser System on board Solar Orbiter. We use our methods to derive the electron bulk parameters in a time interval of a few hours. We attempt a preliminary examination of the polytropic behavior of the electrons by analyzing the derived electron density and temperature. Moreover, we discuss the challenges in analyzing the observations due to the spacecraft charging and photo-electron contamination in the energy range < 10 eV. Aims: We derive bulk parameters of thermal solar wind electrons by analyzing Solar Orbiter observations and we investigate if there is any typical polytropic model that applies to the electron density and temperature fluctuations. Methods: We use the appropriate transformations to convert the observations to velocity distribution functions in the instrument frame. We then derive the electron bulk parameters by a) calculating the statistical moments of the constructed velocity distribution functions and b) by fitting the constructed distributions with analytical expressions. We firstly test our methods by applying them to an artificial data-set, which we produce by using the forward modeling technique. Results: The forward model validates the analysis techniques which we use to derive the electron bulk parameters. The calculation of the statistical moments and the fitting method determines bulk parameters that are identical within uncertainty to the input parameters we use to simulate the plasma electrons in the first place. An application of our analysis technique to the data reveals a nearly isothermal electron "core". The results are affected by the spacecraft potential and the photo-electron contamination, which we need to characterize in detail in future analyses
Accurate and Fast Retrieval for Complex Non-metric Data via Neighborhood Graphs
We demonstrate that a graph-based search algorithm-relying on the
construction of an approximate neighborhood graph-can directly work with
challenging non-metric and/or non-symmetric distances without resorting to
metric-space mapping and/or distance symmetrization, which, in turn, lead to
substantial performance degradation. Although the straightforward metrization
and symmetrization is usually ineffective, we find that constructing an index
using a modified, e.g., symmetrized, distance can improve performance. This
observation paves a way to a new line of research of designing index-specific
graph-construction distance functions
Multilevel Deconstruction of the In Vivo Behavior of Looped DNA-Protein Complexes
Protein-DNA complexes with loops play a fundamental role in a wide variety of
cellular processes, ranging from the regulation of DNA transcription to
telomere maintenance. As ubiquitous as they are, their precise in vivo
properties and their integration into the cellular function still remain
largely unexplored. Here, we present a multilevel approach that efficiently
connects in both directions molecular properties with cell physiology and use
it to characterize the molecular properties of the looped DNA-lac repressor
complex while functioning in vivo. The properties we uncover include the
presence of two representative conformations of the complex, the stabilization
of one conformation by DNA architectural proteins, and precise values of the
underlying twisting elastic constants and bending free energies. Incorporation
of all this molecular information into gene-regulation models reveals an
unprecedented versatility of looped DNA-protein complexes at shaping the
properties of gene expression.Comment: Open Access article available at
http://www.plosone.org/article/fetchArticle.action?articleURI=info%3Adoi%2F10.1371%2Fjournal.pone.000035
Regulation of a rat VL30 element in human breast cancer cells in hypoxia and anoxia: role of HIF-1
Novel approaches to cancer gene therapy currently exploit tumour hypoxia to achieve transcriptional targeting using oxygen-regulated enhancer elements called hypoxia response elements. The activity of such elements in hypoxic cells is directly dependent on upregulation of the hypoxia-inducible transcription factor-1 However tumours also contain areas of anoxia, which may be considered a more tumour-selective transcriptional stimulus than hypoxia for targeting gene therapy to tumours. Another element, from the rat virus-like retrotransposon, VL30 (termed the ‘secondary anoxia response element’) has been reported to be more highly inducible in rat fibroblasts under anoxia than hypoxia. To investigate anoxia as a potential transcriptional target in human tumours, we have examined secondary anoxia response element inducibility in two human breast cancer cell lines, MCF-7 and T47D, under anoxia, hypoxia and normoxia. In both cell types, the trimerised secondary anoxia response element showed greater inducibility in anoxia than hypoxia (1% and 0.5% O2). The anoxic response of the secondary anoxia response element was shown to be dependent on hypoxia-inducible transcription factor-1 and the presence of a hypoxia-inducible transcription binding site consensus (5′-ACGTG-3′). Mutational analysis demonstrated that the base immediately 5′ to this modulates the anoxic/hypoxic induction of the secondary anoxia response element, such that TACGTG>GACGTG>>CACGTG. A similar correlation was found for erythropoietin, phosphoglycerate kinase 1, and aldolase hypoxia response elements, which contain these respective 5′ flanking bases
- …