2,894 research outputs found
Recommended from our members
Contribution of biomass and biofuel emissions to trace gas distributions in Asia during the TRACE-P experiment
Multicomponent Transition Metal Dichalcogenide Nanosheets for ImagingâGuided Photothermal and Chemodynamic Therapy
Transition metal dichalcogenides (TMDs) have received considerable attention due to their strong absorption in the nearâinfrared (NIR) region, strong spinâorbit coupling, and excellent photothermal conversion efficiency (PCE). Herein, CoFeMn dichalcogenide nanosheets (CFMS NSs) are prepared via facile vulcanization of a lamellar CoFeMnâlayered double hydroxide (LDH) precursor followed by polyvinyl pyrrolidone modification (to give CFMSâPVP NSs), and found to show excellent photoacoustic (PA) imaging and synergistic photothermal/chemodynamic therapy (PTT/CDT) performance. The asâprepared CFMSâPVP NSs inherit the ultrathin morphology of the CoFeMnâLDH precursor and exhibit an outstanding photothermal performance with a η of 89.0%, the highest PCE reported to date for 2D TMD materials. Moreover, 50% of maximum catalytic activity (MichaelisâMenten constant, Km) is attained by CFMSâPVP NSs with 0.26 Ă 10â3 m H2O2 at 318 K, markedly lower than the endogenous concentration of H2O2 inside tumor cells. In addition, complete apoptosis of HepG2 cancer cells and complete tumor elimination in vivo are observed after treatment with CFMSâPVP NSs at a low dose, substantiating the NSsâ remarkable PTT/CDT efficacy. This work provides a new and facile approach for the synthesis of highâquality multicomponent TMD nanosheets with precise process control, the potential for mass production, and outstanding performance, providing great promise in cancer theranostics
Aharonov-Bohm interference in topological insulator nanoribbons
Topological insulators represent novel phases of quantum matter with an
insulating bulk gap and gapless edges or surface states. The two-dimensional
topological insulator phase was predicted in HgTe quantum wells and confirmed
by transport measurements. Recently, Bi2Se3 and related materials have been
proposed as three-dimensional topological insulators with a single Dirac cone
on the surface and verified by angle-resolved photoemission spectroscopy
experiments. Here, we show unambiguous transport evidence of topological
surface states through periodic quantum interference effects in layered
single-crystalline Bi2Se3 nanoribbons. Pronounced Aharonov-Bohm oscillations in
the magnetoresistance clearly demonstrate the coverage of two-dimensional
electrons on the entire surface, as expected from the topological nature of the
surface states. The dominance of the primary h/e oscillation and its
temperature dependence demonstrate the robustness of these electronic states.
Our results suggest that topological insulator nanoribbons afford novel
promising materials for future spintronic devices at room temperature.Comment: 5 pages, 4 figures, RevTex forma
Functionalized boron nanosheets as an intelligent nanoplatform for synergistic low-temperature photothermal therapy and chemotherapy
In this work, an innovative boron-based multifunctional nanoplatform was developed for synergistic chemotherapy/low temperature photothermal therapy (PTT). This platform is functionalized with a cRGD peptide to allow the targeting of αvÎČ3 integrin, which is over-expressed in the cells of tumors. The nanoparticles were further loaded with the chemotherapeutic drug doxorubicin (DOX) and a heat shock protein inhibitor (17AAG), and high loading capacities for both DOX (603 mg gâ1 B-PEG-cRGD) and 17AAG (417 mg gâ1) were obtained. The resultant DOX-17AAG@B-PEG-cRGD system shows both pH-controlled and near-infrared (NIR)-induced DOX and 17AAG release. It also provides significantly enhanced cellular uptake in cancerous cells over healthy cells. The presence of 17AAG allows low-temperature PTT to be combined with chemotherapy with DOX, resulting in highly effective anti-cancer activity. This has been confirmed by both in vitro assays and using an in vivo murine cancer model. It is expected that such a multifunctional nanoplatform can serve as a promising candidate for cancer therapy
Discovery (theoretical prediction and experimental observation) of a large-gap topological-insulator class with spin-polarized single-Dirac-cone on the surface
Recent theories and experiments have suggested that strong spin-orbit
coupling effects in certain band insulators can give rise to a new phase of
quantum matter, the so-called topological insulator, which can show macroscopic
entanglement effects. Such systems feature two-dimensional surface states whose
electrodynamic properties are described not by the conventional Maxwell
equations but rather by an attached axion field, originally proposed to
describe strongly interacting particles. It has been proposed that a
topological insulator with a single spin-textured Dirac cone interfaced with a
superconductor can form the most elementary unit for performing fault-tolerant
quantum computation. Here we present an angle-resolved photoemission
spectroscopy study and first-principle theoretical calculation-predictions that
reveal the first observation of such a topological state of matter featuring a
single-surface-Dirac-cone realized in the naturally occurring BiSe
class of materials. Our results, supported by our theoretical predictions and
calculations, demonstrate that undoped compound of this class of materials can
serve as the parent matrix compound for the long-sought topological device
where in-plane surface carrier transport would have a purely quantum
topological origin. Our study further suggests that the undoped compound
reached via n-to-p doping should show topological transport phenomena even at
room temperature.Comment: 3 Figures, 18 pages, Submitted to NATURE PHYSICS in December 200
Recent changes of water discharge and sediment load in the Yellow River basin, China
The Yellow River basin contributes approximately 6% of the sediment load from all river systems globally, and the annual runoff directly supports 12% of the Chinese population. As a result, describing and understanding recent variations of water discharge and sediment load under global change scenarios are of considerable importance. The present study considers the annual hydrologic series of the water discharge and sediment load of the Yellow River basin obtained from 15 gauging stations (10 mainstream, 5 tributaries). The Mann-Kendall test method was adopted to detect both gradual and abrupt change of hydrological series since the 1950s. With the exception of the area draining to the Upper Tangnaihai station, results indicate that both water discharge and sediment load have decreased significantly (p<0.05). The declining trend is greater with distance downstream, and drainage area has a significant positive effect on the rate of decline. It is suggested that the abrupt change of the water discharge from the late 1980s to the early 1990s arose from human extraction, and that the abrupt change in sediment load was linked to disturbance from reservoir construction.Geography, PhysicalGeosciences, MultidisciplinarySCI(E)43ARTICLE4541-5613
Dzyaloshinskii-Moriya Interaction and Spiral Order in Spin-orbit Coupled Optical Lattices
We show that the recent experimental realization of spin-orbit coupling in
ultracold atomic gases can be used to study different types of spin spiral
order and resulting multiferroic effects. Spin-orbit coupling in optical
lattices can give rise to the Dzyaloshinskii-Moriya (DM) spin interaction which
is essential for spin spiral order. By taking into account spin-orbit coupling
and an external Zeeman field, we derive an effective spin model in the Mott
insulator regime at half filling and demonstrate that the DM interaction in
optical lattices can be made extremely strong with realistic experimental
parameters. The rich finite temperature phase diagrams of the effective spin
models for fermions and bosons are obtained via classical Monte Carlo
simulations.Comment: 7 pages, 5 figure
Resolving the ancestry of Austronesian-speaking populations
There are two very different interpretations of the prehistory of Island Southeast Asia (ISEA), with genetic evidence invoked in support of both. The âout-of-Taiwanâ model proposes a major Late Holocene expansion of Neolithic Austronesian speakers from Taiwan. An alternative, proposing that Late Glacial/postglacial sea-level rises triggered largely autochthonous dispersals, accounts for some otherwise enigmatic genetic patterns, but fails to explain the Austronesian language dispersal. Combining mitochondrial DNA (mtDNA), Y-chromosome and genome-wide data, we performed the most comprehensive analysis of the region to date, obtaining highly consistent results across all three systems and allowing us to reconcile the models. We infer a primarily common ancestry for Taiwan/ISEA populations established before the Neolithic, but also detected clear signals of two minor Late Holocene migrations, probably representing Neolithic input from both Mainland Southeast Asia and South China, via Taiwan. This latter may therefore have mediated the Austronesian language dispersal, implying small-scale migration and language shift rather than large-scale expansion
Discreet element modeling of under sleeper pads using a box test
It has recently been reported that under sleeper pads (USPs) could improve ballasted rail track by decreasing the sleeper settlement and reducing particle breakage. In order to find out what happens at the particle-pad interface, discrete element modelling (DEM) is used to provide micro mechanical insight. The same positive effects of USP are found in the DEM simulations. The evidence provided by DEM shows that application of a USP allows more particles to be in contact with the pad, and causes these particles to transfer a larger lateral load to the adjacent ballast but a smaller vertical load beneath the sleeper. This could be used to explain why the USP helps to reduce the track settlement. In terms of particle breakage, it is found that most breakage occurs at the particle-sleeper interface and along the main contact force chains between particles under the sleeper. The use of USPs could effectively reduce particle abrasion that occurs in both of these regions
- âŠ