1,762 research outputs found

    A Thermal Management System to Reuse Thermal Waste Released by High-Power Light-Emitting Diodes

    Full text link
    © 1963-2012 IEEE. In this article, a comprehensive and efficient thermal management system is proposed to harvest and reuse the thermal waste of high-power light-emitting diodes (HP-LEDs) for the first time. Besides a conventional cooling system, including a thermoelectric (TE) cooler (TEC), a heatsink, and a fan, the proposed thermal management system also employs a TE generator (TEG), a temperature sensor, a voltage boost converter, and a microcontroller for thermal waste recycling. In this system, some of the thermal waste released by the HP-LED is harvested by the TEG and converted into electrical energy. With the help of a voltage boost converter, the harvested electrical power is used to power a temperature sensor for monitoring the surface temperature of the HP-LED. The entire system is regulated by the microcontroller. The system is elaborately established, tested, and the results are discussed. The experimental results show that the proposed system has an output electrical power of approximately 696.5μW , which is used to power a temperature sensor as a demonstration. The sensor works well, and the discrepancy of the surface temperature of the HP-LED measured by the sensor and by a thermometer is less than 5.38%, which validates the proposed thermal management system

    Atrial natriuretic peptide and three-dimensional echocardiography after transcatheter closure of atrial septal defect

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Atrial septal defect (ASD) accounts for 10% of all congenital heart lesions and represent the third most congenital cardiac defect seen in adults. Atrial natriuretic peptide (ANP) is an important regulator of the sodium and volume homeostasis. This study was designed to investigate the changes in plasma ANP concentrations and three-dimensional echocardiography (3DE) measurements of cardiac volume in patients with ASD during transcatheter closure of defect.</p> <p>Methods</p> <p>Plasma ANP concentrations and transthoracic 3DE measurements of right ventricular volume were performed in 46 patients with ASD before closure, and at 3 days after closure. 22 healthy subjects matched for age, sex served as control subjects.</p> <p>Results</p> <p>The 46 patients (20 men, 26 women; mean age 26.32 ± 13.28, range 6 to 63 years) were diagnosed to secundum ASD (the stretched diameters of ASD were from 9~36(25.34 ± 7.80 mm), and had been successfully placed Amplatzer septal occluder (the sizes of occluder were from 11 to 40 mm). The results showed that compared with control subjects, plasma ANP concentrations were elevated in patients with ASD. Plasma ANP concentrations positively correlated significantly with pulmonary artery pressure (PAP) (r = 0.74, <it>p </it>< 0.05) and 3DE measurements of cardiac volumes (right ventricular end-diastolic (r = 0.50, <it>p </it>< 0.05) and end-systolic volume (r = 0.50, <it>p </it>< 0.05) and negatively correlated with RVEF (r = -0.38, <it>p </it>< 0.05). Transthoracic 3DE measurements of right ventricular volume and plasma ANP concentrations decreased significantly at 3 days after closure (<it>p </it>< 0.05) compared with it before closure.</p> <p>Conclusion</p> <p>Plasma ANP concentrations were markedly elevated in patients with pulmonary arterial hypertension and right ventricular volume overload and decreased significantly after closure of ASD. This study suggested that ANP may help to identify patients with ASD complicated by pulmonary arterial hypertension and right ventricular volume overload that demanded early intervention and may become effective marker for evaluating changes in cardiac load after transcatheter ASD closure.</p

    Large sulfur isotope fractionations in Martian sediments at Gale crater

    No full text
    Variability in the sulfur isotopic composition in sediments can reflect atmospheric, geologic and biological processes. Evidence for ancient fluvio-lacustrine environments at Gale crater on Mars and a lack of efficient crustal recycling mechanisms on the planet suggests a surface environment that was once warm enough to allow the presence of liquid water, at least for discrete periods of time, and implies a greenhouse effect that may have been influenced by sulfur-bearing volcanic gases. Here we report in situ analyses of the sulfur isotopic compositions of SO2 volatilized from ten sediment samples acquired by NASA’s Curiosity rover along a 13 km traverse of Gale crater. We find large variations in sulfur isotopic composition that exceed those measured for Martian meteorites and show both depletion and enrichment in 34S. Measured values of δ34S range from −47 ± 14‰ to 28 ± 7‰, similar to the range typical of terrestrial environments. Although limited geochronological constraints on the stratigraphy traversed by Curiosity are available, we propose that the observed sulfur isotopic signatures at Gale crater can be explained by equilibrium fractionation between sulfate and sulfide in an impact-driven hydrothermal system and atmospheric processing of sulfur-bearing gases during transient warm periods

    Genome wide association for substance dependence: convergent results from epidemiologic and research volunteer samples

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dependences on addictive substances are substantially-heritable complex disorders whose molecular genetic bases have been partially elucidated by studies that have largely focused on research volunteers, including those recruited in Baltimore. Maryland. Subjects recruited from the Baltimore site of the Epidemiological Catchment Area (ECA) study provide a potentially-useful comparison group for possible confounding features that might arise from selecting research volunteer samples of substance dependent and control individuals. We now report novel SNP (single nucleotide polymorphism) genome wide association (GWA) results for vulnerability to substance dependence in ECA participants, who were initially ascertained as members of a probability sample from Baltimore, and compare the results to those from ethnically-matched Baltimore research volunteers.</p> <p>Results</p> <p>We identify substantial overlap between the home address zip codes reported by members of these two samples. We find overlapping clusters of SNPs whose allele frequencies differ with nominal significance between substance dependent <it>vs </it>control individuals in both samples. These overlapping clusters of nominally-positive SNPs identify 172 genes in ways that are never found by chance in Monte Carlo simulation studies. Comparison with data from human expressed sequence tags suggests that these genes are expressed in brain, especially in hippocampus and amygdala, to extents that are greater than chance.</p> <p>Conclusion</p> <p>The convergent results from these probability sample and research volunteer sample datasets support prior genome wide association results. They fail to support the idea that large portions of the molecular genetic results for vulnerability to substance dependence derive from factors that are limited to research volunteers.</p

    The rate of X-ray-induced DNA double-strand break repair in the embryonic mouse brain is unaff ected by exposure to 50 Hz magnetic fi elds

    Get PDF
    Following in utero exposure to low dose radiation (10 – 200 mGy), we recently observed a linear induction of DNA double-strand breaks (DSB) and activation of apoptosis in the embryonic neuronal stem/progenitor cell compartment. No signifi cant induction of DSB or apoptosis was observed following exposure to magnetic fi elds (MF). In the present study, we exploited this in vivo system to examine whether exposure to MF before and after exposure to 100 mGy X-rays impacts upon DSB repair rates. Materials and methods : 53BP1 foci were quantifi ed following combined exposure to radiation and MF in the embryonic neuronal stem/progenitor cell compartment. Embryos were exposed in utero to 50 Hz MF at 300 m T for 3 h before and up to 9 h after exposure to 100 mGy X-rays. Controls included embryos exposed to MF or X-rays alone plus sham exposures. Results : Exposure to MF before and after 100 mGy X-rays did not impact upon the rate of DSB repair in the embryonic neuronal stem cell compartment compared to repair rates following radiation exposure alone. Conclusions : We conclude that in this sensitive system MF do not exert any signifi cant level of DNA damage and do not impede the repair of X-ray induced damage

    Improving the Energy-Conversion Efficiency of a PV-TE System with an Intelligent Power-Track Switching Technique and Efficient Thermal-Management Scheme

    Full text link
    A photovoltaic-thermoelectric (PV-TE) hybrid system can be used for efficient thermal energy utilization from the generated waste heat in PV devices. In this article, an efficient PV-TE hybrid system with intelligent power-track switching technique and thermal management based on energy conversion is proposed. To make the output power of PV-TE system stable and normalized, an incorporated stable voltage circuit is designed based on energy conversion. In addition, a control-and-monitoring strategy is launched in the system to realize the normal collecting for the output power of PV-TE system. Finally, a battery protection circuit is performed to ensure that the energy converted by the entire system is effectively stored. The experimental results show that more electrical energy about 84 034 J was obtained with our energy harvesting system than that of a single photovoltaic (PV) cell. Besides, the thermal gradient of PV cells is indirectly reduced the operation of the whole system, which is automatically monitored due to the proposed intelligent power-track switching technique

    Anisotropic Structure of the Order Parameter in FeSe0.45Te0.55 Revealed by Angle Resolved Specific Heat

    Full text link
    The symmetry and structure of the superconducting gap in the Fe-based superconductors are the central issue for understanding these novel materials. So far the experimental data and theoretical models have been highly controversial. Some experiments favor two or more constant or nearly-constant gaps, others indicate strong anisotropy and yet others suggest gap zeros ("nodes"). Theoretical models also vary, suggesting that the absence or presence of the nodes depends quantitatively on the model parameters. An opinion that has gained substantial currency is that the gap structure, unlike all other known superconductors, including cuprates, may be different in different compounds within the same family. A unique method for addressing this issue, one of the very few methods that are bulk and angle-resolved, calls for measuring the electronic specific heat in a rotating magnetic field, as a function of field orientation with respect to the crystallographic axes. In this Communication we present the first such measurement for an Fe-based high-Tc superconductor (FeBSC). We observed a fourfold oscillation of the specific heat as a function of the in-plane magnetic field direction, which allowed us to identify the locations of the gap minima (or nodes) on the Fermi surface. Our results are consistent with the expectations of an extended s-wave model with a significant gap anisotropy on the electron pockets and the gap minima along the \Gamma M (or Fe-Fe bond) direction.Comment: 32 pages, 7 figure
    corecore