363 research outputs found
Positive Interspecific Relationship between Temporal Occurrence and Abundance in Insects
One of the most studied macroecological patterns is the interspecific abundance–occupancy relationship, which relates species distribution and abundance across space. Interspecific relationships between temporal distribution and abundance, however, remain largely unexplored. Using data for a natural assemblage of tabanid flies measured daily during spring and summer in Nova Scotia, we found that temporal occurrence (proportion of sampling dates in which a species occurred in an experimental trap) was positively related to temporal mean abundance (number of individuals collected for a species during the study period divided by the total number of sampling dates). Moreover, two models that often describe spatial abundance–occupancy relationships well, the He–Gaston and negative binomial models, explained a high amount of the variation in our temporal data. As for the spatial abundance–occupancy relationship, the (temporal) aggregation parameter, k, emerged as an important component of the hereby named interspecific temporal abundance–occurrence relationship. This may be another case in which a macroecological pattern shows similarities across space and time, and it deserves further research because it may improve our ability to forecast colonization dynamics and biological impacts
Pasteurella multocida Heddleston serovar 3 and 4 strains share a common lipopolysaccharide biosynthesis locus but display both inter- and intrastrain lipopolysaccharide heterogeneity
Pasteurella multocida is a Gram-negative multispecies pathogen and the causative agent of fowl cholera, a serious disease of poultry which can present in both acute and chronic forms. The major outer membrane component lipopolysaccharide (LPS) is both an important virulence factor and a major immunogen. Our previous studies determined the LPS structures expressed by different P. multocida strains and revealed that a number of strains belonging to different serovars contain the same LPS biosynthesis locus but express different LPS structures due to mutations within glycosyltransferase genes. In this study, we report the full LPS structure of the serovar 4 type strain, P1662, and reveal that it shares the same LPS outer core biosynthesis locus, L3, with the serovar 3 strains P1059 and Pm70. Using directed mutagenesis, the role of each glycosyltransferase gene in LPS outer core assembly was determined. LPS structural analysis of 23 Australian field isolates that contain the L3 locus revealed that at least six different LPS outer core structures can be produced as a result of mutations within the LPS glycosyltransferase genes. Moreover, some field isolates produce multiple but related LPS glycoforms simultaneously, and three LPS outer core structures are remarkably similar to the globo series of vertebrate glycosphingolipids. Our in-depth analysis showing the genetics and full range of P. multocida lipopolysaccharide structures will facilitate the improvement of typing systems and the prediction of the protective efficacy of vaccines
Rapamycin and the transcription factor C/EBPβ as a switch in osteoclast differentiation: implications for lytic bone diseases
Lytic bone diseases and in particular osteoporosis are common age-related diseases characterized by enhanced bone fragility due to loss of bone density. Increasingly, osteoporosis poses a major global health-care problem due to the growth of the elderly population. Recently, it was found that the gene regulatory transcription factor CCAAT/enhancer binding protein beta (C/EBPβ) is involved in bone metabolism. C/EBPβ occurs as different protein isoforms of variable amino terminal length, and regulation of the C/EBPβ isoform ratio balance was found to represent an important factor in osteoclast differentiation and bone homeostasis. Interestingly, adjustment of the C/EBPβ isoform ratio by the process of translational control is downstream of the mammalian target of rapamycin kinase (mTOR), a sensor of the nutritional status and a target of immunosuppressive and anticancer drugs. The findings imply that modulating the process of translational control of C/EBPβ isoform expression could represent a novel therapeutic approach in osteolytic bone diseases, including cancer and infection-induced bone loss
P38 Mitogen-Activated Protein Kinase Inhibitor, FR167653, Inhibits Parathyroid Hormone Related Protein-Induced Osteoclastogenesis and Bone Resorption
p38 mitogen-activated protein kinase (MAPK) acts downstream in the signaling pathway that includes receptor activator of NF-κB (RANK), a powerful inducer of osteoclast formation and activation. We investigated the role of p38 MAPK in parathyroid hormone related protein (PTHrP)-induced osteoclastogenesis in vitro and PTHrP-induced bone resorption in vivo. The ability of FR167653 to inhibit osteoclast formation was evaluated by counting the number of tartrate-resistant acid phosphatase positive multinucleated cells (TRAP-positive MNCs) in in vitro osteoclastgenesis assays. Its mechanisms were evaluated by detecting the expression level of c-Fos and nuclear factor of activated T cells c1 (NFATc1) in bone marrow macrophages(BMMs) stimulated with sRANKL and M-CSF, and by detecting the expression level of osteoprotegerin (OPG) and RANKL in bone marrow stromal cells stimulated with PTHrP in the presence of FR167653. The function of FR167653 on bone resorption was assessed by measuring the bone resorption area radiographically and by counting osteoclast number per unit bone tissue area in calvaria in a mouse model of bone resorption by injecting PTHrP subcutaneously onto calvaria. Whole blood ionized calcium levels were also recorded. FR167653 inhibited PTHrP-induced osteoclast formation and PTHrP-induced c-Fos and NFATc1 expression in bone marrow macrophages, but not the expression levels of RANKL and OPG in primary bone marrow stromal cells treated by PTHrP. Furthermore, bone resorption area and osteoclast number in vivo were significantly decreased by the treatment of FR167653. Systemic hypercalcemia was also partially inhibited. Inhibition of p38 MAPK by FR167653 blocks PTHrP-induced osteoclastogenesis in vitro and PTHrP-induced bone resorption in vivo, suggesting that the p38 MAPK signaling pathway plays a fundamental role in PTHrP-induced osteoclastic bone resorption
Global Diversity Hotspots and Conservation Priorities for Sharks
Sharks are one of the most threatened groups of marine animals, as high exploitation rates coupled with low resilience to fishing pressure have resulted in population declines worldwide. Designing conservation strategies for this group depends on basic knowledge of the geographic distribution and diversity of known species. So far, this information has been fragmented and incomplete. Here, we have synthesized the first global shark diversity pattern from a new database of published sources, including all 507 species described at present, and have identified hotspots of shark species richness, functional diversity and endemicity from these data. We have evaluated the congruence of these diversity measures and demonstrate their potential use in setting priority areas for shark conservation. Our results show that shark diversity across all species peaks on the continental shelves and at mid-latitudes (30–40 degrees N and S). Global hotspots of species richness, functional diversity and endemicity were found off Japan, Taiwan, the East and West coasts of Australia, Southeast Africa, Southeast Brazil and Southeast USA. Moreover, some areas with low to moderate species richness such as Southern Australia, Angola, North Chile and Western Continental Europe stood out as places of high functional diversity. Finally, species affected by shark finning showed different patterns of diversity, with peaks closer to the Equator and a more oceanic distribution overall. Our results show that the global pattern of shark diversity is uniquely different from land, and other well-studied marine taxa, and may provide guidance for spatial approaches to shark conservation. However, similar to terrestrial ecosystems, protected areas based on hotspots of diversity and endemism alone would provide insufficient means for safeguarding the diverse functional roles that sharks play in marine ecosystems
Antibacterial resistance and their genetic location in MRSA isolated in Kuwait hospitals, 1994-2004
BACKGROUND: Methicillin-resistant Staphylococcus aureus (MRSA) continues to be a major cause of serious infections in hospitals and in the community worldwide. In this study, MRSA isolated from patients in Kuwait hospitals were analyzed for resistance trends and the genetic location of their resistance determinants. METHODS: Between April 1994 and December 2004, 5644 MRSA isolates obtained from different clinical samples were studied for resistance to antibacterial agents according to guidelines from the National Committee for Clinical Laboratory Standards and the British Society for Antimicrobial Chemotherapy. The genetic location of their resistance determinants was determined by curing and transfer experiments. RESULTS: They were resistant to aminoglycosides, erythromycin, tetracycline, trimethoprim, fusidic acid, ciprofloxacin, chloramphenicol, rifampicin, mupirocin, cadmium acetate, mercuric chloride, propamidine isethionate and ethidium bromide but susceptible to vancomycin, teicoplanin and linezolid. The proportion of the isolates resistant to erythromycin, ciprofloxacin and fusidic acid increased during the study period. In contrast, the proportion of isolates resistant to gentamicin, tetracycline, chloramphenicol and trimethoprim declined. High-level mupirocin resistance increased rapidly from 1996 to 1999 and then declined. They contained plasmids of 1.9, 2.8, 3.0, 4.4, 27 and 38 kilobases. Genetic studies revealed that they carried plasmid-borne resistance to high-level mupirocin resistance (38 kb), chloramphenicol (2.8 – 4.4 kb), erythromycin (2.8–3.0 kb) and cadmium acetate, mercuric chloride, propamidine isethionate and ethidium bromide (27 kb) and chromosomal location for methicillin, the aminoglycosides, tetracycline, fusidic acid, ciprofloxacin and trimethoprim resistance. Thus, the 27 kb plasmids had resistance phenotypes similar to plasmids reported in MRSA isolates in South East Asia. CONCLUSION: The prevalence of resistance to erythromycin, ciprofloxacin, high-level mupirocin and fusidic acid increased whereas the proportion of isolates resistant to gentamicin, tetracycline, chloramphenicol and trimethoprim declined during the study period. They contained 27-kb plasmids encoding resistance to cadmium acetate, mercuric chloride, propamidine isethionate and ethidium bromide similar to plasmids isolated in MRSA from South East Asia. Molecular typing of these isolates will clarify their relationship to MRSA from South East Asia
A multi-metric approach to investigate the effects of weather conditions on the demographic of a terrestrial mammal, the European badger (Meles meles)
Models capturing the full effects of weather conditions on animal populations are scarce. Here we decompose yearly temperature and rainfall into mean trends, yearly amplitude of change and residual variation, using daily records. We establish from multi-model inference procedures, based on 1125 life histories (from 1987 to 2008), that European badger (Meles meles) annual mortality and recruitment rates respond to changes in mean trends and to variability in proximate weather components. Variation in mean rainfall was by far the most influential predictor in our analysis. Juvenile survival and recruitment rates were highest at intermediate levels of mean rainfall, whereas low adult survival rates were associated with only the driest, and not the wettest, years. Both juvenile and adult survival rates also exhibited a range of tolerance for residual standard deviation around daily predicted temperature values, beyond which survival rates declined. Life-history parameters, annual routines and adaptive behavioural responses, which define the badgers’ climatic niche, thus appear to be predicated upon a bounded range of climatic conditions, which support optimal survival and recruitment dynamics. That variability in weather conditions is influential, in combination with mean climatic trends, on the vital rates of a generalist, wide ranging and K-selected medium-sized carnivore, has major implications for evolutionary ecology and conservation
Therapeutic targets for bone metastases in breast cancer
Breast cancer is prone to metastasize to bone. Once metastatic cells are in the bone marrow, they do not, on their own, destroy bone. Instead, they alter the functions of bone-resorbing (osteoclasts) and bone-forming cells (osteoblasts), resulting in skeletal complications that cause pathological fractures and pain. In this review, we describe promising molecular bone-targeted therapies that have arisen from recent advances in our understanding of the pathogenesis of breast cancer bone metastases. These therapies target osteoclasts (receptor activator of nuclear factor kB ligand, integrin αvβ3, c-Src, cathepsin K), osteoblasts (dickkopf-1, activin A, endothelin A) and the bone marrow microenvironment (transforming growth factor β, bone morphogenetic proteins, chemokine CXCL-12 and its receptor CXCR4). The clinical exploitation of these bone-targeted agents will provide oncologists with novel therapeutic strategies for the treatment of skeletal lesions in breast cancer
Mitochondrial and endoplasmic reticulum stress pathways cooperate in zearalenone-induced apoptosis of human leukemic cells
<p>Abstract</p> <p>Background</p> <p>Zearalenone (ZEA) is a phytoestrogen from <it>Fusarium </it>species. The aims of the study was to identify mode of human leukemic cell death induced by ZEA and the mechanisms involved.</p> <p>Methods</p> <p>Cell cytotoxicity of ZEA on human leukemic HL-60, U937 and peripheral blood mononuclear cells (PBMCs) was performed by using 3-(4,5-dimethyl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Reactive oxygen species production, cell cycle analysis and mitochondrial transmembrane potential reduction was determined by employing 2',7'-dichlorofluorescein diacetate, propidium iodide and 3,3'-dihexyloxacarbocyanine iodide and flow cytometry, respectively. Caspase-3 and -8 activities were detected by using fluorogenic Asp-Glu-Val-Asp-7-amino-4-methylcoumarin (DEVD-AMC) and Ile-Glu-Thr-Asp-7-amino-4-methylcoumarin (IETD-AMC) substrates, respectively. Protein expression of cytochrome c, Bax, Bcl-2 and Bcl-xL was performed by Western blot. The expression of proteins was assessed by two-dimensional polyacrylamide gel-electrophoresis (PAGE) coupled with LC-MS2 analysis and real-time reverse transcription polymerase chain reaction (RT-PCR) approach.</p> <p>Results</p> <p>ZEA was cytotoxic to U937 > HL-60 > PBMCs and caused subdiploid peaks and G1 arrest in both cell lines. Apoptosis of human leukemic HL-60 and U937 cell apoptosis induced by ZEA was via an activation of mitochondrial release of cytochrome c through mitochondrial transmembrane potential reduction, activation of caspase-3 and -8, production of reactive oxygen species and induction of endoplasmic reticulum stress. Bax was up regulated in a time-dependent manner and there was down regulation of Bcl-xL expression. Two-dimensional PAGE coupled with LC-MS2 analysis showed that ZEA treatment of HL-60 cells produced differences in the levels of 22 membrane proteins such as apoptosis inducing factor and the ER stress proteins including endoplasmic reticulum protein 29 (ERp29), 78 kDa glucose-regulated protein, heat shock protein 90 and calreticulin, whereas only <it>ERp29 </it>mRNA transcript increased.</p> <p>Conclusion</p> <p>ZEA induced human leukemic cell apoptosis via endoplasmic stress and mitochondrial pathway.</p
Conduct disorder in girls: neighborhoods, family characteristics, and parenting behaviors
<p>Abstract</p> <p>Background</p> <p>Little is known about the social context of girls with conduct disorder (CD), a question of increasing importance to clinicians and researchers. The purpose of this study was to examine the associations between three social context domains (neighborhood, family characteristics, and parenting behaviors) and CD in adolescent girls, additionally testing for race moderation effects. We predicted that disadvantaged neighborhoods, family characteristics such as parental marital status, and parenting behaviors such as negative discipline would characterize girls with CD. We also hypothesized that parenting behaviors would mediate the associations between neighborhood and family characteristics and CD.</p> <p>Methods</p> <p>We recruited 93 15–17 year-old girls from the community and used a structured psychiatric interview to assign participants to a CD group (n = 52) or a demographically matched group with no psychiatric disorder (n = 41). Each girl and parent also filled out questionnaires about neighborhood, family characteristics, and parenting behaviors.</p> <p>Results</p> <p>Neighborhood quality was not associated with CD in girls. Some family characteristics (parental antisociality) and parenting behaviors (levels of family activities and negative discipline) were characteristic of girls with CD, but notll. There was no moderation by race. Our hypothesis that the association between family characteristics and CD would be mediated by parenting behaviors was not supported.</p> <p>Conclusion</p> <p>This study expanded upon previous research by investigating multiple social context domains in girls with CD and by selecting a comparison group who were not different in age, social class, or race. When these factors are thus controlled, CD in adolescent girls is not significantly associated with neighborhood, but is associated with some family characteristics and some types of parental behaviors. However, the mechanisms underlying these relationships need to be further investigated. We discuss possible explanations for our findings and suggest directions for future research.</p
- …