8 research outputs found

    Direct characterization of young giant exoplanets at high spectral resolution by coupling SPHERE and CRIRES+

    Get PDF
    This is the final version. Available on open access from EDP Sciences via the DOI in this recordStudies of atmospheres of directly imaged extrasolar planets with high-resolution spectrographs have shown that their characterization is predominantly limited by noise on the stellar halo at the location of the studied exoplanet. An instrumental combination of highcontrast imaging and high spectral resolution that suppresses this noise and resolves the spectral lines can therefore yield higher quality spectra. We study the performance of the proposed HiRISE fiber coupling between the direct imager SPHERE and the spectrograph CRIRES+ at the Very Large Telescope for spectral characterization of directly imaged planets. Using end-to-end simulations of HiRISE we determine the signal-to-noise ratio (S/N) of the detection of molecular species for known extrasolar planets in H and K bands, and compare them to CRIRES+. We investigate the ultimate detection limits of HiRISE as a function of stellar magnitude, and we quantify the impact of different coronagraphs and of the system transmission. We find that HiRISE largely outperforms CRIRES+ for companions around bright hosts like β Pictoris or 51 Eridani. For an H = 3.5 host, we observe a gain of a factor of up to 36 in observing time with HiRISE to reach the same S/N on a companion at 200 mas. More generally, HiRISE provides better performance than CRIRES+ in two-hour integration times between 50–400 mas for hosts with H < 8.5 and between 50–800 mas for H < 7. For fainter hosts like PDS 70 and HIP 65426, no significant improvements are observed. We find that using no coronagraph yields the best S/N when characterizing known exoplanets due to higher transmission and fiber-based starlight suppression. We demonstrate that the overall transmission of the system is in fact the main driver of performance. Finally, we show that HiRISE outperforms the best detection limits of SPHERE for bright stars, opening major possibilities for the characterization of future planetary companions detected by other techniquesEuropean Union Horizon 202

    Future Exoplanet Research: High-Contrast Imaging Techniques

    No full text
    International audienceHigh-contrast imaging (HCI) techniques appear like the best solutions to directly characterize large orbit planets and planetary environments in the future. The first dedicated scientific instruments like SPHERE on VLT and GPI on Gemini South have only been commissioned in 2013-2014. HCI is thus a rather young field of research, still very prolific with a lot of technical solutions proposed to improve the actual instrument concepts. A lot of new technical solutions have been recently proposed to improve actual instrument concepts. Since most of them have not yet been tested at the expected level of performance and/or in real conditions, it is rather difficult to define precisely which solutions will be the most efficient scientifically with respect to the future technical, environmental, and operational constraints. Among these different solutions, I will describe and discuss the main directions of development required to optimize the future HCI instruments on speckle suppression, wavefront correction, and detection methods
    corecore