20 research outputs found

    Localisation of renin-angiotensin system (RAS) components in breast

    Get PDF
    Angiotensin II has mitogenic and angiogenic effects and its receptors are widespread, particularly in epithelial tissue. Tissue renin angiotensin systems (tRASs) may be a local source of angiotensin II that has specific paracrine functions. To investigate the presence of a tRAS in normal human breast and tumours. Immunocytochemistry, and quantitative RT–PCR was used to establish: (i) the presence and localisation of RAS components, (ii) the possibility of their involvement in cancer. (1) mRNA coding for angiotensinogen, prorenin, angiotensin converting enzyme (ACE), and both AT1 and AT2 receptors was demonstrated in normal and diseased breast tissues. (2) (pro)renin was identified in epithelial cells in both normal and diseased tissue, but in invasive carcinoma, its distribution was mostly confined to fibroblasts or could not be detected at all. (3) Angiotensin converting enzyme was shown in epithelial cells in both normal and malignant tissue. The results are consistent with the hypothesis that a tRAS is present in the breast, and is disrupted in invasive cancer

    Distinct Behaviour of the Homeodomain Derived Cell Penetrating Peptide Penetratin in Interaction with Different Phospholipids

    Get PDF
    Penetratin is a protein transduction domain derived from the homeoprotein Antennapedia. Thereby it is currently used as a cell penetrating peptide to introduce diverse molecules into eukaryotic cells, and it could also be involved in the cellular export of transcription factors. Moreover, it has been shown that it is able to act as an antimicrobial agent. The mechanisms involved in all these processes are quite controversial.In this article, we report spectroscopic, calorimetric and biochemical data on the penetratin interaction with three different phospholipids: phosphatidylcholine (PC) and phosphatidylethanolamine (PE) to mimic respectively the outer and the inner leaflets of the eukaryotic plasma membrane and phosphatidylglycerol (PG) to mimic the bacterial membrane. We demonstrate that with PC, penetratin is able to form vesicle aggregates with no major change in membrane fluidity and presents no well defined secondary structure organization. With PE, penetratin aggregates vesicles, increases membrane rigidity and acquires an α-helical structure. With PG membranes, penetratin does not aggregate vesicles but decreases membrane fluidity and acquires a structure with both α-helical and β–sheet contributions.These data from membrane models suggest that the different penetratin actions in eukaryotic cells (membrane translocation during export and import) and on prokaryotes may result from different peptide and lipid structural arrangements. The data suggest that, for eukaryotic cell penetration, penetratin does not acquire classical secondary structure but requires a different conformation compared to that in solution

    Seasonal and Regional Dynamics of M. ulcerans Transmission in Environmental Context: Deciphering the Role of Water Bugs as Hosts and Vectors

    Get PDF
    Buruli ulcer, caused by Mycobacterium ulcerans, is a devastating skin disease. Most cases of Buruli ulcer occur in poor rural communities. As a result, treatment is frequently sought too late and about 25% of those infected—particularly children—become permanently disabled. Outbreaks of Buruli ulcer have always been associated with swampy areas. However, the route(s) of bacillus transmission is (are) still unclear. This Mycobacterium species resides in water where it colonizes many ecological niches such as aquatic plants, herbivorous animals and predatory/carnivorous insects. For several years the role of water bugs as hosts and vectors of M. ulcerans was suspected and was demonstrated under laboratory conditions. The aim of this work was to further assess the role of water bugs as hosts and vectors of M. ulcerans in environmental context. This work identifies several water bug families as hosts of M. ulcerans in Buruli ulcer endemic area. The detection of bacilli in saliva of human biting insects provides further evidence for their role in M. ulcerans transmission. Interestingly, three of these insects are good flyers, and as such could participate in M. ulcerans dissemination
    corecore