40,066 research outputs found

    Kohn-Luttinger superconductivity in graphene

    Get PDF
    We investigate the development of superconductivity in graphene when the Fermi level becomes close to one of the Van Hove singularities of the electron system. The origin of the pairing instability lies in the strong anisotropy of the e-e scattering at the Van Hove filling, which leads to a channel with attractive coupling when making the projection of the BCS vertex on the symmetry modes with nontrivial angular dependence along the Fermi line. We show that the scale of the superconducting instability may be pushed up to temperatures larger than 10 K, depending on the ability to tune the system to the proximity of the Van Hove singularity.Comment: 5 pages, 3 figure

    Magnetotunneling in a Two-Dimensional Electron-Hole System Near Equilibrium

    Get PDF
    We have measured the zero-bias differential tunneling conductance of InAs/AlSb/GaS b/AlSb/InAs heterostructures at low temperatures (1.7K < T < 60K) and unde r a magnetic field at various angles with the heterostructure's interfaces. Shubni kov-de Haas oscillations in the magnetoconductance reveal the two-dimensional (2D) character of the electrons accumulated at the InAs interfaces and yield their num ber in each of them. The temperature dependence of the oscillations suggests the f ormation of a field-induced energy gap at the Fermi level, similar to that observe d before in simpler 2D-2D tunneling systems. A calculation of the magnetoconductan ce that considers different 2D densities in the two InAs electrodes agrees with th e main observations, but fails to explain features that might be related to the pr esence of 2D holes in the GaSb region.Comment: 4 papes, 3 eps figures. Submit to Phys. Rev.

    Spectroscopic study of early-type multiple stellar systems II. New binary subsystems

    Get PDF
    Context. This work is part of a long-term spectroscopic study of a sample of 30 multiple stars with early-type components. In this second paper we present the results of six multiple systems in which new stellar components have been detected. Aims. The main aim is to increase the knowledge of stellar properties and dynamical structure of early-type multiple stellar systems. Methods. Using spectroscopic observations taken over a time baseline of more than 5 years we measured RVs by cross-correlations and applied a spectral disentangling method to double-lined systems. Besides the discovery of objects with double-lined spectra, the existence of new spectroscopic subsystems have been inferred from the radial velocity variations of single-lined components and through the variation of the barycentric velocity of double-lined subsystems. Orbital elements have been calculated when possible. Results. Seven new stellar components and two members that we expect to confirm with new observations have been discovered in the six studied multiples. We present orbital parameters for two double-lined binaries and preliminary orbits for three single-lined spectroscopic binaries. Five of the six analysed systems are quadruples, while the remaining has five components distributed in four hierarchical levels. These multiplicity orders are in fact lower limits, since these systems lack high-resolution visual observations and additional hierarchical level might exist in that separation range. Conclusions. The six analysed systems have greater multiplicity degree and a more complex hierarchical structure than previously known, which suggests that high-order multiple systems are significantly more frequent that it is currently estimated. The long term spectroscopic monitoring of multiple systems has shown to be useful for the detection of companions in intermediate hierarchical levels.Comment: 13 pages, 9 figures. Accepted by Astronomy and Astrophysic

    Model charged cylindrical nanopore in a colloidal dispersion: charge reversal, overcharging and double overcharging

    Full text link
    Using the hypernetted-chain/mean spherical approximation (HNC/MSA) integral equations we study the electrical double layer inside and outside a model charged cylindrical vesicle (nanopore) immersed into a primitive model macroions solution, so that the macroions are only present outside the nanopore, i.e., the vesicle wall is impermeable only to the external macroions. We calculate the ionic and local linear charge density profiles inside and outside the vesicle, and find that the correlation between the inside and outside ionic distributions causes the phenomena of overcharging (also referred to as surface charge amplification) and/or charge reversal. This is the first time overcharging is predicted in an electrical double layer of cylindrical geometry. We also report the new phenomenon of double overcharging. The present results can be of consequence for relevant systems in physical-chemistry, energy storage and biology, e.g., nanofilters, capacitors and cell membranes.Comment: 10 pages, 4 figure

    Unconventional quasiparticle lifetime in undoped graphene

    Full text link
    We address the question of how small can the quasiparticle decay rate be at low energies in undoped graphene, where kinematical constraints are known to prevent the decay into particle-hole excitations. For this purpose, we study the renormalization of the phonon dispersion by many-body effects, which turns out to be very strong in the case of the out-of-plane phonons at the K point of the spectrum. We show that these evolve into a branch of very soft modes that provide the relevant channel for quasiparticle decay, at energies below the scale of the optical phonon modes. In this regime, we find that the decay rate is proportional to the cube of the quasiparticle energy. This implies that a crossover should be observed in transport properties from the linear dependence characteristic of the high-energy regime to the much slower decay rate due to the soft phonon modes.Comment: 5 pages, 1 figur

    Evidence of Non-Markovian Behavior in the Process of Bank Rating Migrations

    Get PDF
    This paper estimates transition matrices for the ratings on financial institutions, using an unusually informative data set. We show that the process of rating migration exhibits significant non-Markovian behavior, in the sense that the transition intensiFinancial institutions, macroeconomic variables, capitalization, supervision, transition intensities

    Environmental sensitivity of n-i-n and undoped single GaN nanowire photodetectors

    Full text link
    In this work, we compare the photodetector performance of single defect-free undoped and n-in GaN nanowires (NWs). In vacuum, undoped NWs present a responsivity increment, nonlinearities and persistent photoconductivity effects (~ 100 s). Their unpinned Fermi level at the m-plane NW sidewalls enhances the surface states role in the photodetection dynamics. Air adsorbed oxygen accelerates the carrier dynamics at the price of reducing the photoresponse. In contrast, in n-i-n NWs, the Fermi level pinning at the contact regions limits the photoinduced sweep of the surface band bending, and hence reduces the environment sensitivity and prevents persistent effects even in vacuum
    corecore