7,658 research outputs found

    Different faces of the phantom

    Full text link
    The SNe type Ia data admit that the Universe today may be dominated by some exotic matter with negative pressure violating all energy conditions. Such exotic matter is called {\it phantom matter} due to the anomalies connected with violation of the energy conditions. If a phantom matter dominates the matter content of the universe, it can develop a singularity in a finite future proper time. Here we show that, under certain conditions, the evolution of perturbations of this matter may lead to avoidance of this future singularity (the Big Rip). At the same time, we show that local concentrations of a phantom field may form, among other regular configurations, black holes with asymptotically flat static regions, separated by an event horizon from an expanding, singularity-free, asymptotically de Sitter universe.Comment: 6 pages, presented at IRGAC 2006, Barcelona, 11-15 July 200

    Generalized Chaplygin gas with α=0\alpha = 0 and the ΛCDM\Lambda CDM cosmological model

    Full text link
    The generalized Chaplygin gas model is characterized by the equation of state p=−Aραp = - \frac{A}{\rho^\alpha}. It is generally stated that the case α=0\alpha = 0 is equivalent to a model with cosmological constant and dust (ΛCDM\Lambda CDM). In this work we show that, if this is true for the background equations, this is not true for the perturbation equations. Hence, the mass spectrum predicted for both models may differ.Comment: Latex file, 4 pages, 2 figures in eps forma

    No-horizon theorem for spacetimes with spacelike G1 isometry groups

    Full text link
    We consider four-dimensional spacetimes (M,g)(M,{\mathbf g}) which obey the Einstein equations G=T{\mathbf G}={\mathbf T}, and admit a global spacelike G1=RG_{1}={\mathbb R} isometry group. By means of dimensional reduction and local analyis on the reduced (2+1) spacetime, we obtain a sufficient condition on T{\mathbf T} which guarantees that (M,g)(M,{\mathbf g}) cannot contain apparent horizons. Given any (3+1) spacetime with spacelike translational isometry, the no-horizon condition can be readily tested without the need for dimensional reduction. This provides thus a useful and encompassing apparent horizon test for G1G_{1}-symmetric spacetimes. We argue that this adds further evidence towards the validity of the hoop conjecture, and signals possible violations of strong cosmic censorship.Comment: 8 pages, LaTeX, uses IOP package; published in Class. Quantum Gra

    Strong curvature singularities in quasispherical asymptotically de Sitter dust collapse

    Get PDF
    We study the occurrence, visibility, and curvature strength of singularities in dust-containing Szekeres spacetimes (which possess no Killing vectors) with a positive cosmological constant. We find that such singularities can be locally naked, Tipler strong, and develop from a non-zero-measure set of regular initial data. When examined along timelike geodesics, the singularity's curvature strength is found to be independent of the initial data.Comment: 16 pages, LaTeX, uses IOP package, 2 eps figures; accepted for publication in Class. Quantum Gra

    Cosmic homogeneity: a spectroscopic and model-independent measurement

    Get PDF
    Cosmology relies on the Cosmological Principle, i.e., the hypothesis that the Universe is homogeneous and isotropic on large scales. This implies in particular that the counts of galaxies should approach a homogeneous scaling with volume at sufficiently large scales. Testing homogeneity is crucial to obtain a correct interpretation of the physical assumptions underlying the current cosmic acceleration and structure formation of the Universe. In this Letter, we use the Baryon Oscillation Spectroscopic Survey to make the first spectroscopic and model-independent measurements of the angular homogeneity scale Ξh\theta_{\rm h}. Applying four statistical estimators, we show that the angular distribution of galaxies in the range 0.46 < z < 0.62 is consistent with homogeneity at large scales, and that Ξh\theta_{\rm h} varies with redshift, indicating a smoother Universe in the past. These results are in agreement with the foundations of the standard cosmological paradigm.Comment: 5 pages, 2 figures, Version accepted by MNRA

    Experimental and theoretical evidences for the ice regime in planar artificial spin ices

    Full text link
    In this work, we explore a kind of geometrical effect in the thermodynamics of artificial spin ices (ASI). In general, such artificial materials are athermal. Here, We demonstrate that geometrically driven dynamics in ASI can open up the panorama of exploring distinct ground states and thermally magnetic monopole excitations. It is shown that a particular ASI lattice will provide a richer thermodynamics with nanomagnet spins experiencing less restriction to flip precisely in a kind of rhombic lattice. This can be observed by analysis of only three types of rectangular artificial spin ices (RASI). Denoting the horizontal and vertical lattice spacings by a and b, respectively, then, a RASI material can be described by its aspect ratio Îł\gamma=a/b. The rhombic lattice emerges when Îł\gamma=3\sqrt{3}. So, by comparing the impact of thermal effects on the spin flips in these three appropriate different RASI arrays, it is possible to find a system very close to the ice regime

    Modeling the spectrum of gravitational waves in the primordial Universe

    Full text link
    Recent observations from type Ia Supernovae and from cosmic microwave background (CMB) anisotropies have revealed that most of the matter of the Universe interacts in a repulsive manner, composing the so-called dark energy constituent of the Universe. The analysis of cosmic gravitational waves (GW) represents, besides the CMB temperature and polarization anisotropies, an additional approach in the determination of parameters that may constrain the dark energy models and their consistence. In recent work, a generalized Chaplygin gas model was considered in a flat universe and the corresponding spectrum of gravitational waves was obtained. The present work adds a massless gas component to that model and the new spectrum is compared to the previous one. The Chaplygin gas is also used to simulate a Λ\Lambda-CDM model by means of a particular combination of parameters so that the Chaplygin gas and the Λ\Lambda-CDM models can be easily distinguished in the theoretical scenarios here established. The lack of direct observational data is partialy solved when the signature of the GW on the CMB spectra is determined.Comment: Proc. of the Conference on Magnetic Fields in the Universe: from laboratories and stars to primordial structures, AIP(NY), eds. E. M. de Gouveia Dal Pino, G. Lugones & A. Lazarian (2005), in press. (8 pages, 11 figures

    Occupation times of exclusion processes

    Get PDF
    In this paper we consider exclusion processes {ηt:t≄0}\{\eta_t: t\geq{0}\} evolving on the one-dimensional lattice Z\mathbb{Z}, under the diffusive time scale tn2tn^2 and starting from the invariant state Μρ\nu_\rho - the Bernoulli product measure of parameter ρ∈[0,1]\rho\in{[0,1]}. Our goal consists in establishing the scaling limits of the additive functional Γt:=∫0tn2ηs(0) ds\Gamma_t:=\int_{0}^{tn^2} \eta_s(0)\, ds - {\em{ the occupation time of the origin}}. We present a method, recently introduced in \cite{G.J.}, from which a {\em{local Boltzmann-Gibbs Principle}} can be derived for a general class of exclusion processes. In this case, this principle says that Γt\Gamma_t is very well approximated to the additive functional of the density of particles. As a consequence, the scaling limits of Γt\Gamma_t follow from the scaling limits of the density of particles. As examples we present the mean-zero exclusion, the symmetric simple exclusion and the weakly asymmetric simple exclusion. For the latter under a strong asymmetry regime, the limit of Γt\Gamma_t is given in terms of the solution of the KPZ equation.FC
    • 

    corecore