9,218 research outputs found
Integrability of the Minimal Strain Equations for the Lapse and Shift in 3+1 Numerical Relativity
Brady, Creighton and Thorne have argued that, in numerical relativity
simulations of the inspiral of binary black holes, if one uses lapse and shift
functions satisfying the ``minimal strain equations'' (MSE), then the
coordinates might be kept co-rotating, the metric components would then evolve
on the very slow inspiral timescale, and the computational demands would thus
be far smaller than for more conventional slicing choices. In this paper, we
derive simple, testable criteria for the MSE to be strongly elliptic, thereby
guaranteeing the existence and uniqueness of the solution to the Dirichlet
boundary value problem. We show that these criteria are satisfied in a test-bed
metric for inspiraling binaries, and we argue that they should be satisfied
quite generally for inspiraling binaries. If the local existence and uniqueness
that we have proved holds globally, then, for appropriate boundary values, the
solution of the MSE exhibited by Brady et. al. (which tracks the inspiral and
keeps the metric evolving slowly) will be the unique solution and thus should
be reproduced by (sufficiently accurate and stable) numerical integrations.Comment: 6 pages; RevTeX; submitted to Phys. Rev. D15. Technical issue of the
uniqueness of the solution to the Dirichlet problem clarified. New subsection
on the nature of the boundary dat
No-horizon theorem for spacetimes with spacelike G1 isometry groups
We consider four-dimensional spacetimes which obey the
Einstein equations , and admit a global spacelike
isometry group. By means of dimensional reduction and local
analyis on the reduced (2+1) spacetime, we obtain a sufficient condition on
which guarantees that cannot contain apparent
horizons. Given any (3+1) spacetime with spacelike translational isometry, the
no-horizon condition can be readily tested without the need for dimensional
reduction. This provides thus a useful and encompassing apparent horizon test
for -symmetric spacetimes. We argue that this adds further evidence
towards the validity of the hoop conjecture, and signals possible violations of
strong cosmic censorship.Comment: 8 pages, LaTeX, uses IOP package; published in Class. Quantum Gra
NIST cybersecurity framework compliance: A generic model for dynamic assessment and predictive requirements
Organizations have become increasingly dependent on information systems to perform their business as usual activities. Moreover, organizations have registered an increase in the number of cyber-attacks, namely: industrial espionage, confidential information leakage, digital theft or pure damage to corporate image and reputation. In order to try to mitigate these issues, organizations like the National Institute of Standards and Technology (NIST) have made an effort to establish a cybersecurity protection guide. This paper presents a baseline for developing a generic and flexible model for manipulating key factors inside organizations: Processes, Human Resources and Technology, and extrapolate the percentage of compliance with the NIST cybersecurity framework, measure the current cybersecurity risk and allocate financial investments towards specific compliance objectives and reduce the overlapping of existing resources.info:eu-repo/semantics/submittedVersio
Perturbative analysis of generalized Einstein's theories
The hypothesis that the energy-momentum tensor of ordinary matter is not
conserved separately, leads to a non-adiabatic expansion and, in many cases, to
an Universe older than usual. This may provide a solution for the entropy and
age problems of the Standard Cosmological Model. We consider two different
theories of this type, and we perform a perturbative analysis, leading to
analytical expressions for the evolution of gravitational waves, rotational
modes and density perturbations. One of these theories exhibits satisfactory
properties at this level, while the other one should be discarded.Comment: 14 pages, Latex fil
Experimental and theoretical evidences for the ice regime in planar artificial spin ices
In this work, we explore a kind of geometrical effect in the thermodynamics
of artificial spin ices (ASI). In general, such artificial materials are
athermal. Here, We demonstrate that geometrically driven dynamics in ASI can
open up the panorama of exploring distinct ground states and thermally magnetic
monopole excitations. It is shown that a particular ASI lattice will provide a
richer thermodynamics with nanomagnet spins experiencing less restriction to
flip precisely in a kind of rhombic lattice. This can be observed by analysis
of only three types of rectangular artificial spin ices (RASI). Denoting the
horizontal and vertical lattice spacings by a and b, respectively, then, a RASI
material can be described by its aspect ratio =a/b. The rhombic lattice
emerges when =. So, by comparing the impact of thermal
effects on the spin flips in these three appropriate different RASI arrays, it
is possible to find a system very close to the ice regime
- …