4,538 research outputs found

    Generalized Chaplygin gas with α=0\alpha = 0 and the ΛCDM\Lambda CDM cosmological model

    Full text link
    The generalized Chaplygin gas model is characterized by the equation of state p=Aραp = - \frac{A}{\rho^\alpha}. It is generally stated that the case α=0\alpha = 0 is equivalent to a model with cosmological constant and dust (ΛCDM\Lambda CDM). In this work we show that, if this is true for the background equations, this is not true for the perturbation equations. Hence, the mass spectrum predicted for both models may differ.Comment: Latex file, 4 pages, 2 figures in eps forma

    Modeling the spectrum of gravitational waves in the primordial Universe

    Full text link
    Recent observations from type Ia Supernovae and from cosmic microwave background (CMB) anisotropies have revealed that most of the matter of the Universe interacts in a repulsive manner, composing the so-called dark energy constituent of the Universe. The analysis of cosmic gravitational waves (GW) represents, besides the CMB temperature and polarization anisotropies, an additional approach in the determination of parameters that may constrain the dark energy models and their consistence. In recent work, a generalized Chaplygin gas model was considered in a flat universe and the corresponding spectrum of gravitational waves was obtained. The present work adds a massless gas component to that model and the new spectrum is compared to the previous one. The Chaplygin gas is also used to simulate a Λ\Lambda-CDM model by means of a particular combination of parameters so that the Chaplygin gas and the Λ\Lambda-CDM models can be easily distinguished in the theoretical scenarios here established. The lack of direct observational data is partialy solved when the signature of the GW on the CMB spectra is determined.Comment: Proc. of the Conference on Magnetic Fields in the Universe: from laboratories and stars to primordial structures, AIP(NY), eds. E. M. de Gouveia Dal Pino, G. Lugones & A. Lazarian (2005), in press. (8 pages, 11 figures

    Experimental and theoretical evidences for the ice regime in planar artificial spin ices

    Full text link
    In this work, we explore a kind of geometrical effect in the thermodynamics of artificial spin ices (ASI). In general, such artificial materials are athermal. Here, We demonstrate that geometrically driven dynamics in ASI can open up the panorama of exploring distinct ground states and thermally magnetic monopole excitations. It is shown that a particular ASI lattice will provide a richer thermodynamics with nanomagnet spins experiencing less restriction to flip precisely in a kind of rhombic lattice. This can be observed by analysis of only three types of rectangular artificial spin ices (RASI). Denoting the horizontal and vertical lattice spacings by a and b, respectively, then, a RASI material can be described by its aspect ratio γ\gamma=a/b. The rhombic lattice emerges when γ\gamma=3\sqrt{3}. So, by comparing the impact of thermal effects on the spin flips in these three appropriate different RASI arrays, it is possible to find a system very close to the ice regime

    Turbulence and the formation of filaments, loops and shock fronts in NGC 1275 in the Perseus Galaxy Cluster

    Full text link
    NGC1275, the central galaxy in the Perseus cluster, is the host of gigantic hot bipolar bubbles inflated by AGN jets observed in the radio as Perseus A. It presents a spectacular HαH{\alpha}-emitting nebulosity surrounding NGC1275, with loops and filaments of gas extending to over 50 kpc. The origin of the filaments is still unknown, but probably correlates with the mechanism responsible for the giant buoyant bubbles. We present 2.5 and 3-dimensional MHD simulations of the central region of the cluster in which turbulent energy, possibly triggered by star formation and supernovae (SNe) explosions is introduced. The simulations reveal that the turbulence injected by massive stars could be responsible for the nearly isotropic distribution of filaments and loops that drag magnetic fields upward as indicated by recent observations. Weak shell-like shock fronts propagating into the ICM with velocities of 100-500 km/s are found, also resembling the observations. The isotropic outflow momentum of the turbulence slows the infall of the intracluster medium, thus limiting further starburst activity in NGC1275. As the turbulence is subsonic over most of the simulated volume, the turbulent kinetic energy is not efficiently converted into heat and additional heating is required to suppress the cooling flow at the core of the cluster. Simulations combining the MHD turbulence with the AGN outflow can reproduce the temperature radial profile observed around NGC1275. While the AGN mechanism is the main heating source, the supernovae are crucial to isotropize the energy distribution.Comment: accepted by ApJ Letter

    Quantum transitions of the XY model with long-range interactions on the inhomogenous periodic chain

    Full text link
    The isotropic XY model (s=1/2)(s=1/2) in a transverse field, with uniform long-range interactions among the transverse components of the spins, on the inhomogeneous periodic chain, is studied. The model, composed of NN segments with nn different exchange interactions and magnetic moments, is exactly solved by introducing the integral gaussian transformation and the generalized Jordan-Wigner transformation, which reduce the problem to the diagonalization of a finite matrix of nnth order. The quantum transitions induced by the transverse field are determined by analyzing the induced magnetization of the cell and the equation of state. The phase diagrams for the quantum transitions, in the space generated by the transverse field and the interaction parameters, are presented. As expected, the model presents multiple, first- and second-order quantum transitions induced by the transverse field, and it corresponds to an extension of the models recently considered by the authors. Detailed results are also presented, at T=0, for the induced magnetization and isothermal susceptibility χTzz\chi_{T}^{zz} as function of the transverse field.Comment: 24 pages, 11 figures, accepted for publication in Physical Review

    Phase diagram of a random-anisotropy mixed-spin Ising model

    Full text link
    We investigate the phase diagram of a mixed spin-1/2--spin-1 Ising system in the presence of quenched disordered anisotropy. We carry out a mean-field and a standard self-consistent Bethe--Peierls calculation. Depending on the amount of disorder, there appear novel transition lines and multicritical points. Also, we report some connections with a percolation problem and an exact result in one dimension.Comment: 8 pages, 4 figures, accepted for publication in Physical Review

    The anisotropic XY model on the inhomogeneous periodic chain

    Full text link
    The static and dynamic properties of the anisotropic XY-model (s=1/2)(s=1/2) on the inhomogeneous periodic chain, composed of NN cells with nn different exchange interactions and magnetic moments, in a transverse field h,h, are determined exactly at arbitrary temperatures. The properties are obtained by introducing the Jordan-Wigner fermionization and by reducing the problem to a diagonalization of a finite matrix of nthnth order. The quantum transitions are determined exactly by analyzing, as a function of the field, the induced magnetization 1/n\sum_{m=1}^{n}\mu_{m}\left (jj denotes the cell, mm the site within the cell, μm\mu_{m} the magnetic moment at site mm within the cell) and the spontaneous magnetization 1/nm=1n<Sj,mx,>1/n\sum_{m=1}^{n}\left< S_{j,m}^{x},\right> which is obtained from the correlations <Sj,mxSj+r,mx>\left< S_{j,m}^{x}S_{j+r,m}^{x}\right> for large spin separations. These results, which are obtained for infinite chains, correspond to an extension of the ones obtained by Tong and Zhong(\textit{Physica B} \textbf{304,}91 (2001)). The dynamic correlations, <Sj,mz(t)Sj,mz(0)>\left< S_{j,m}^{z}(t)S_{j^{\prime},m^{\prime}}^{z}(0)\right>, and the dynamic susceptibility, χqzz(ω),\chi_{q}^{zz}(\omega), are also obtained at arbitrary temperatures. Explicit results are presented in the limit T=0, where the critical behaviour occurs, for the static susceptibility χqzz(0)\chi_{q}^{zz}(0) as a function of the transverse field hh, and for the frequency dependency of dynamic susceptibility χqzz(ω)\chi_{q}^{zz}(\omega).Comment: 33 pages, 13 figures, 01 table. Revised version (minor corrections) accepted for publiction in Phys. Rev.
    corecore