13 research outputs found

    Critical velocity in kink-defect interaction models: rigorous results

    Get PDF
    In this work we study a model of interaction of kinks of the sine-Gordon equation with a weak defect. We obtain rigorous results concerning the so-called critical velocity derived in [7] by a geometric approach. More specifically, we prove that a heteroclinic orbit in the energy level 0 of a 2-dof Hamiltonian is destroyed giving rise to heteroclinic connections between certain elements (at infinity) for exponentially small (in e) energy levels. In this setting Melnikov theory does not apply because there are exponentially small phenomena.Peer ReviewedPostprint (published version

    Comparação de métodos de seleção de genitores e populações segregantes aplicados ao melhoramento de trigo

    Get PDF
    Os métodos utilizados para seleção de cruzamentos em uma cultura não necessariamente são apropriados para outras. O presente trabalho teve como objetivo avaliar a aplicação da análise dialélica, da diversidade genética, da média parental e do método de Jinks e Pooni na seleção de genitores e populações segregantes superiores para o caráter rendimento de grãos em trigo. Para isso, foram conduzidos dois experimentos. Os tratamentos foram dispostos em látice (experimento I) e em blocos casualizados com informação de indivíduo dentro da parcela (experimento II). Avaliaram-se 12 genitores e as 36 populações segregantes na geração F3 resultantes do cruzamento desses genitores em esquema de dialelo parcial. A aplicação das metodologias avaliadas produziu resultados distintos. A média parental e a diversidade genética isoladamente não constituem método de predição eficiente. A aplicação da metodologia de Jinks e Pooni apresenta limitação de ordem prática, não se adequando ao sistema de cultivo do trigo. Dentre as metodologias avaliadas, a análise dialélica constitui o método mais promissor para identificação de genitores e populações segregantes superiores

    Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Understanding the health consequences associated with exposure to risk factors is necessary to inform public health policy and practice. To systematically quantify the contributions of risk factor exposures to specific health outcomes, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 aims to provide comprehensive estimates of exposure levels, relative health risks, and attributable burden of disease for 88 risk factors in 204 countries and territories and 811 subnational locations, from 1990 to 2021. Methods: The GBD 2021 risk factor analysis used data from 54 561 total distinct sources to produce epidemiological estimates for 88 risk factors and their associated health outcomes for a total of 631 risk–outcome pairs. Pairs were included on the basis of data-driven determination of a risk–outcome association. Age-sex-location-year-specific estimates were generated at global, regional, and national levels. Our approach followed the comparative risk assessment framework predicated on a causal web of hierarchically organised, potentially combinative, modifiable risks. Relative risks (RRs) of a given outcome occurring as a function of risk factor exposure were estimated separately for each risk–outcome pair, and summary exposure values (SEVs), representing risk-weighted exposure prevalence, and theoretical minimum risk exposure levels (TMRELs) were estimated for each risk factor. These estimates were used to calculate the population attributable fraction (PAF; ie, the proportional change in health risk that would occur if exposure to a risk factor were reduced to the TMREL). The product of PAFs and disease burden associated with a given outcome, measured in disability-adjusted life-years (DALYs), yielded measures of attributable burden (ie, the proportion of total disease burden attributable to a particular risk factor or combination of risk factors). Adjustments for mediation were applied to account for relationships involving risk factors that act indirectly on outcomes via intermediate risks. Attributable burden estimates were stratified by Socio-demographic Index (SDI) quintile and presented as counts, age-standardised rates, and rankings. To complement estimates of RR and attributable burden, newly developed burden of proof risk function (BPRF) methods were applied to yield supplementary, conservative interpretations of risk–outcome associations based on the consistency of underlying evidence, accounting for unexplained heterogeneity between input data from different studies. Estimates reported represent the mean value across 500 draws from the estimate's distribution, with 95% uncertainty intervals (UIs) calculated as the 2·5th and 97·5th percentile values across the draws. Findings: Among the specific risk factors analysed for this study, particulate matter air pollution was the leading contributor to the global disease burden in 2021, contributing 8·0% (95% UI 6·7–9·4) of total DALYs, followed by high systolic blood pressure (SBP; 7·8% [6·4–9·2]), smoking (5·7% [4·7–6·8]), low birthweight and short gestation (5·6% [4·8–6·3]), and high fasting plasma glucose (FPG; 5·4% [4·8–6·0]). For younger demographics (ie, those aged 0–4 years and 5–14 years), risks such as low birthweight and short gestation and unsafe water, sanitation, and handwashing (WaSH) were among the leading risk factors, while for older age groups, metabolic risks such as high SBP, high body-mass index (BMI), high FPG, and high LDL cholesterol had a greater impact. From 2000 to 2021, there was an observable shift in global health challenges, marked by a decline in the number of all-age DALYs broadly attributable to behavioural risks (decrease of 20·7% [13·9–27·7]) and environmental and occupational risks (decrease of 22·0% [15·5–28·8]), coupled with a 49·4% (42·3–56·9) increase in DALYs attributable to metabolic risks, all reflecting ageing populations and changing lifestyles on a global scale. Age-standardised global DALY rates attributable to high BMI and high FPG rose considerably (15·7% [9·9–21·7] for high BMI and 7·9% [3·3–12·9] for high FPG) over this period, with exposure to these risks increasing annually at rates of 1·8% (1·6–1·9) for high BMI and 1·3% (1·1–1·5) for high FPG. By contrast, the global risk-attributable burden and exposure to many other risk factors declined, notably for risks such as child growth failure and unsafe water source, with age-standardised attributable DALYs decreasing by 71·5% (64·4–78·8) for child growth failure and 66·3% (60·2–72·0) for unsafe water source. We separated risk factors into three groups according to trajectory over time: those with a decreasing attributable burden, due largely to declining risk exposure (eg, diet high in trans-fat and household air pollution) but also to proportionally smaller child and youth populations (eg, child and maternal malnutrition); those for which the burden increased moderately in spite of declining risk exposure, due largely to population ageing (eg, smoking); and those for which the burden increased considerably due to both increasing risk exposure and population ageing (eg, ambient particulate matter air pollution, high BMI, high FPG, and high SBP). Interpretation: Substantial progress has been made in reducing the global disease burden attributable to a range of risk factors, particularly those related to maternal and child health, WaSH, and household air pollution. Maintaining efforts to minimise the impact of these risk factors, especially in low SDI locations, is necessary to sustain progress. Successes in moderating the smoking-related burden by reducing risk exposure highlight the need to advance policies that reduce exposure to other leading risk factors such as ambient particulate matter air pollution and high SBP. Troubling increases in high FPG, high BMI, and other risk factors related to obesity and metabolic syndrome indicate an urgent need to identify and implement interventions. Funding: Bill & Melinda Gates Foundation

    Modelling, Optimization And Control Of Subway Systems.

    No full text
    A methodology that improves the operational use of reference schedules for the North-South line of the Metro Company of Sao Paulo is presented. Improvements with respect to the reference schedules are obtained by exploring the fact that the model used to generate reference schedules does not differentiate trains being dispatched from the Jabaquara yard. The strategy takes into account the maximum delay time possible with respect to the arrival time of each train in Jabaquara such that no train exceeds its capacity, and there is no violation of physical constraints imposed by the system or by maintenance requirements. Based on the limits determined above, the reference schedule is modified to adjust the arrival times at Jabaquara in order to redispatch trains. This methodology has been implemented and computer simulations have shown that it can improve further the operational utilization of trains.616516
    corecore