266 research outputs found

    The essential role of dermatology publications in enhancing professional diversity, equity and inclusion

    Get PDF
    Dermatology publications have substantial untapped potential to improve patient care for all patients and communities. The leadership role of both the editors and editorial boards of these journals, books and digital media provides an important opportunity to support professional diversity, equity and inclusion (DEI) plus democratization of knowledge. Multiple events in many countries in recent times have demonstrated the need to work harder at DEI to ensure a level playing field for all patients, clinicians and researchers

    The CARMA-NRO Orion Survey: Core Emergence and Kinematics in the Orion A Cloud

    Get PDF
    We have investigated the formation and kinematics of submillimeter (submm) continuum cores in the Orion A molecular cloud. A comparison between submm continuum and near-infrared extinction shows a continuum core detection threshold of AV ∼ 5–10 mag. The threshold is similar to the star formation extinction threshold of AV ∼ 7 mag proposed by recent work, suggesting a universal star formation extinction threshold among clouds within 500 pc to the Sun. A comparison between the Orion A cloud and a massive infrared dark cloud G28.37+0.07 indicates that Orion A produces more dense gas within the extinction range 15 mag ≲ AV ≲ 60 mag. Using data from the CARMA-NRO Orion Survey, we find that dense cores in the integral-shaped filament (ISF) show subsonic core-to-envelope velocity dispersion that is significantly less than the local envelope line dispersion, similar to what has been found in nearby clouds. Dynamical analysis indicates that the cores are bound to the ISF. An oscillatory core-to-envelope motion is detected along the ISF. Its origin is to be further explored

    Accelerating Drug Development for Neuroblastoma: Consensus Statement From the Third Neuroblastoma Drug Development Strategy Forum.

    Get PDF
    High-risk neuroblastoma is a poor prognosis cancer of the sympathetic nervous system that accounts for a disproportionate number of childhood cancer deaths. Many viable biological targets have been identified, and the number of potential combinations is even larger. Several products have attained marketing authorization for treatment of patients with neuroblastoma. Patient outcomes remain poor, with approximately 50% of children with newly diagnosed high-risk neuroblastoma cured of their disease. International, multistakeholder Neuroblastoma Drug Development Strategy (NDDS) meetings were established more than a decade ago. This third NDDS meeting included academia, industry, regulatory, and patient advocacy representatives to prioritize agents and to address key challenges in drug development in this disease. Given the central role that anti-GD2 therapy plays, novel GD2-directed combinations were a key focus, including epigenetic enzymes such as EZH2 and immunologic targets such as IL15 and TIGIT as potential combination partners. GD2-directed chimeric antigen receptor (CAR)-T cells were a top priority, along with emerging CAR-T targets such as B7-H3 and GPC2. Recognizing that combination therapies are likely to be most impactful for patients and for advancing therapies to frontline, another key focus was on high priority combinations of targeted therapies, including Aurora A kinase plus BCL2 or ATR inhibitors. Additional targets and agents were prioritized or deprioritized based upon current data. Access to drugs for clinical trials was viewed as a major barrier to progress. Strategies to overcome this challenge focused on united efforts by the international scientific and advocacy community and early engagement by industry with regulatory authorities

    The magnetic field in the Flame nebula

    Get PDF
    International audienceContext. Star formation drives the evolution of galaxies and the cycling of matter between different phases of the interstellar medium and stars. The support of interstellar clouds against gravitational collapse by magnetic fields has been proposed as a possible explanation for the low observed star formation efficiency in galaxies and the Milky Way. The Planck satellite provided the first all-sky map of the magnetic field geometry in the diffuse interstellar medium on angular scales of 5–15′. However, higher spatial resolution observations are required to understand the transition from diffuse, subcritical gas to dense, gravitationally unstable filaments.Aims. NGC 2024, also known as the Flame nebula, is located in the nearby Orion B molecular cloud. It contains a young, expanding H II region and a dense supercritical filament. This filament harbors embedded protostellar objects and is likely not supported by the magnetic field against gravitational collapse. Therefore, NGC 2024 provides an excellent opportunity to study the role of magnetic fields in the formation, evolution, and collapse of dense filaments, the dynamics of young H II regions, and the effects of mechanical and radiative feedback from massive stars on the surrounding molecular gas.Methods. We combined new 154 and 216 μm dust polarization measurements carried out using the HAWC+ instrument aboard SOFIA with molecular line observations of 12CN(1−0) and HCO+(1−0) from the IRAM 30-m telescope to determine the magnetic field geometry, and to estimate the plane of the sky magnetic field strength across the NGC 2024 H II region and the surrounding molecular cloud.Results. The HAWC+ observations show an ordered magnetic field geometry in NGC 2024 that follows the morphology of the expanding H II region and the direction of the main dense filament. The derived plane of the sky magnetic field strength is moderate, ranging from 30 to 80 μG. The strongest magnetic field is found at the eastern edge of the H II region, characterized by the highest gas densities and molecular line widths. In contrast, the weakest field is found toward the main, dense filament in NGC 2024.Conclusions. We find that the magnetic field has a non-negligible influence on the gas stability at the edges of the expanding H II shell (gas impacted by stellar feedback) and the filament (site of current star formation)

    Herschel observations of EXtra-Ordinary Sources (HEXOS): Observations of H2O and its isotopologues towards Orion KL

    Get PDF
    We report the detection of more than 48 velocity-resolved ground rotational state transitions of H 16 2 O, H 18 2 O, and H 17 2 O – most for the first time – in both emission and absorption toward Orion KL using Herschel/HIFI. We show that a simple fit, constrained to match the known emission and absorption components along the line of sight, is in excellent agreement with the spectral profiles of all the water lines. Using the measured H 18 2 O line fluxes, which are less affected by line opacity than their H 16 2 O counterparts, and an escape probability method, the column densities of H 18 2 O associated with each emission component are derived. We infer total water abundances of 7.4 × 10−5, 1.0× 10−5, and 1.6 × 10−5 for the plateau, hot core, and extended warm gas, respectively. In the case of the plateau, this value is consistent with previous measures of the Orion-KL water abundance as well as those of other molecular outflows. In the case of the hot core and extended warm gas, these values are somewhat higher than water abundances derived for other quiescent clouds, suggesting that these regions are likely experiencing enhanced water-ice sublimation from (and reduced freeze-out onto) grain surfaces due to the warmer dust in these sources

    Herschel observations of deuterated water towards Sgr B2(M)

    Get PDF
    Observations of HDO are an important complement for studies of water, because they give strong constraints on the formation processes – grain surfaces versus energetic process in the gas phase, e.g. in shocks. The HIFI observations of multiple transitions of HDO in Sgr B2(M) presented here allow the determination of the HDO abundance throughout the envelope, which has not been possible before with ground-based observations only. The abundance structure has been modeled with the spherical Monte Carlo radiative transfer code RATRAN, which also takes radiative pumping by continuum emission from dust into account. The modeling reveals that the abundance of HDO rises steeply with temperature from a low abundance (2.5 × 10−11) in the outer envelope at temperatures below 100 K through a medium abundance (1.5 × 10−9) in the inner envelope/outer core at temperatures between 100 and 200 K, and finally a high abundance ( 3.5 × 10−9) at temperatures above 200 K in the hot core
    corecore