52 research outputs found

    The Human Gonadotropin Releasing Hormone Type I Receptor Is a Functional Intracellular GPCR Expressed on the Nuclear Membrane

    Get PDF
    The mammalian type I gonadotropin releasing hormone receptor (GnRH-R) is a structurally unique G protein-coupled receptor (GPCR) that lacks cytoplasmic tail sequences and displays inefficient plasma membrane expression (PME). Compared to its murine counterparts, the primate type I receptor is inefficiently folded and retained in the endoplasmic reticulum (ER) leading to a further reduction in PME. The decrease in PME and concomitant increase in intracellular localization of the mammalian GnRH-RI led us to characterize the spatial distribution of the human and mouse GnRH receptors in two human cell lines, HEK 293 and HTR-8/SVneo. In both human cell lines we found the receptors were expressed in the cytoplasm and were associated with the ER and nuclear membrane. A molecular analysis of the receptor protein sequence led us to identify a putative monopartite nuclear localization sequence (NLS) in the first intracellular loop of GnRH-RI. Surprisingly, however, neither the deletion of the NLS nor the addition of the Xenopus GnRH-R cytoplasmic tail sequences to the human receptor altered its spatial distribution. Finally, we demonstrate that GnRH treatment of nuclei isolated from HEK 293 cells expressing exogenous GnRH-RI triggers a significant increase in the acetylation and phosphorylation of histone H3, thereby revealing that the nuclear-localized receptor is functional. Based on our findings, we conclude that the mammalian GnRH-RI is an intracellular GPCR that is expressed on the nuclear membrane. This major and novel discovery causes us to reassess the signaling potential of this physiologically and clinically important receptor

    Induction of Selective Blood-Tumor Barrier Permeability and Macromolecular Transport by a Biostable Kinin B1 Receptor Agonist in a Glioma Rat Model

    Get PDF
    Treatment of malignant glioma with chemotherapy is limited mostly because of delivery impediment related to the blood-brain tumor barrier (BTB). B1 receptors (B1R), inducible prototypical G-protein coupled receptors (GPCR) can regulate permeability of vessels including possibly that of brain tumors. Here, we determine the extent of BTB permeability induced by the natural and synthetic peptide B1R agonists, LysdesArg9BK (LDBK) and SarLys[dPhe8]desArg9BK (NG29), in syngeneic F98 glioma-implanted Fischer rats. Ten days after tumor inoculation, we detected the presence of B1R on tumor cells and associated vasculature. NG29 infusion increased brain distribution volume and uptake profiles of paramagnetic probes (Magnevist and Gadomer) at tumoral sites (T1-weighted imaging). These effects were blocked by B1R antagonist and non-selective cyclooxygenase inhibitors, but not by B2R antagonist and non-selective nitric oxide synthase inhibitors. Consistent with MRI data, systemic co-administration of NG29 improved brain tumor delivery of Carboplatin chemotherapy (ICP-Mass spectrometry). We also detected elevated B1R expression in clinical samples of high-grade glioma. Our results documented a novel GPCR-signaling mechanism for promoting transient BTB disruption, involving activation of B1R and ensuing production of COX metabolites. They also underlined the potential value of synthetic biostable B1R agonists as selective BTB modulators for local delivery of different sized-therapeutics at (peri)tumoral sites

    Overexpression of Myocilin in the Drosophila Eye Activates the Unfolded Protein Response: Implications for Glaucoma

    Get PDF
    Glaucoma is the world's second leading cause of bilateral blindness with progressive loss of vision due to retinal ganglion cell death. Myocilin has been associated with congenital glaucoma and 2-4% of primary open angle glaucoma (POAG) cases, but the pathogenic mechanisms remain largely unknown. Among several hypotheses, activation of the unfolded protein response (UPR) has emerged as a possible disease mechanism.We used a transgenic Drosophila model to analyze whole-genome transcriptional profiles in flies that express human wild-type or mutant MYOC in their eyes. The transgenic flies display ocular fluid discharge, reflecting ocular hypertension, and a progressive decline in their behavioral responses to light. Transcriptional analysis shows that genes associated with the UPR, ubiquitination, and proteolysis, as well as metabolism of reactive oxygen species and photoreceptor activity undergo altered transcriptional regulation. Following up on the results from these transcriptional analyses, we used immunoblots to demonstrate the formation of MYOC aggregates and showed that the formation of such aggregates leads to induction of the UPR, as evident from activation of the fluorescent UPR marker, xbp1-EGFP. CONCLUSIONS / SIGNIFICANCE: Our results show that aggregation of MYOC in the endoplasmic reticulum activates the UPR, an evolutionarily conserved stress pathway that culminates in apoptosis. We infer from the Drosophila model that MYOC-associated ocular hypertension in the human eye may result from aggregation of MYOC and induction of the UPR in trabecular meshwork cells. This process could occur at a late age with wild-type MYOC, but might be accelerated by MYOC mutants to account for juvenile onset glaucoma

    Ligand-Induced Tyrosine Phosphorylation of Cysteinyl Leukotriene Receptor 1 Triggers Internalization and Signaling in Intestinal Epithelial Cells

    Get PDF
    Leukotriene D(4) (LTD(4)) belongs to the bioactive lipid group known as eicosanoids and has implications in pathological processes such as inflammation and cancer. Leukotriene D(4) exerts its effects mainly through two different G-protein-coupled receptors, CysLT(1) and CysLT(2). The high affinity LTD(4) receptor CysLT(1)R exhibits tumor-promoting properties by triggering cell proliferation, survival, and migration in intestinal epithelial cells. In addition, increased expression and nuclear localization of CysLT(1)R correlates with a poorer prognosis for patients with colon cancer

    Cystatin A, a Potential Common Link for Mutant Myocilin Causative Glaucoma

    Get PDF
    Myocilin (MYOC) is a 504 aa secreted glycoprotein induced by stress factors in the trabecular meshwork tissue of the eye, where it was discovered. Mutations in MYOC are linked to glaucoma. The glaucoma phenotype of each of the different MYOC mutation varies, but all of them cause elevated intraocular pressure (IOP). In cells, forty percent of wild-type MYOC is cleaved by calpain II, a cysteine protease. This proteolytic process is inhibited by MYOC mutants. In this study, we investigated the molecular mechanisms by which MYOC mutants cause glaucoma. We constructed adenoviral vectors with variants Q368X, R342K, D380N, K423E, and overexpressed them in human trabecular meshwork cells. We analyzed expression profiles with Affymetrix U133Plus2 GeneChips using wild-type and null viruses as controls. Analysis of trabecular meshwork relevant mechanisms showed that the unfolded protein response (UPR) was the most affected. Search for individual candidate genes revealed that genes that have been historically connected to trabecular meshwork physiology and pathology were altered by the MYOC mutants. Some of those had known MYOC associations (MMP1, PDIA4, CALR, SFPR1) while others did not (EDN1, MGP, IGF1, TAC1). Some, were top-changed in only one mutant (LOXL1, CYP1B1, FBN1), others followed a mutant group pattern. Some of the genes were new (RAB39B, STC1, CXCL12, CSTA). In particular, one selected gene, the cysteine protease inhibitor cystatin A (CSTA), was commonly induced by all mutants and not by the wild-type. Subsequent functional analysis of the selected gene showed that CSTA was able to reduce wild-type MYOC cleavage in primary trabecular meshwork cells while an inactive mutated CSTA was not. These findings provide a new molecular understanding of the mechanisms of MYOC-causative glaucoma and reveal CSTA, a serum biomarker for cancer, as a potential biomarker and drug for the treatment of MYOC-induced glaucoma

    Expression and function of G-protein-coupled receptorsin the male reproductive tract

    Get PDF
    This review focuses on the expression and function of muscarinic acetylcholine receptors (mAChRs), α1-adrenoceptors and relaxin receptors in the male reproductive tract. The localization and differential expression of mAChR and α1-adrenoceptor subtypes in specific compartments of the efferent ductules, epididymis, vas deferens, seminal vesicle and prostate of various species indicate a role for these receptors in the modulation of luminal fluid composition and smooth muscle contraction, including effects on male fertility. Furthermore, the activation of mAChRs induces transactivation of the epidermal growth factor receptor (EGFR) and the Sertoli cell proliferation. The relaxin receptors are present in the testis, RXFP1 in elongated spermatids and Sertoli cells from rat, and RXFP2 in Leydig and germ cells from rat and human, suggesting a role for these receptors in the spermatogenic process. The localization of both receptors in the apical portion of epithelial cells and smooth muscle layers of the vas deferens suggests an involvement of these receptors in the contraction and regulation of secretion.Esta revisão enfatiza a expressão e a função dos receptores muscarínicos, adrenoceptores α1 e receptores para relaxina no sistema reprodutor masculino. A expressão dos receptores muscarínicos e adrenoceptores α1 em compartimentos específicos de dúctulos eferentes, epidídimo, ductos deferentes, vesícula seminal e próstata de várias espécies indica o envolvimento destes receptores na modulação da composição do fluido luminal e na contração do músculo liso, incluindo efeitos na fertilidade masculina. Além disso, a ativação dos receptores muscarínicos leva à transativação do receptor para o fator crescimento epidermal e proliferação das células de Sertoli. Os receptores para relaxina estão presentes no testículo, RXFP1 nas espermátides alongadas e células de Sertoli de rato e RXFP2 nas células de Leydig e germinativas de ratos e humano, sugerindo o envolvimento destes receptores no processo espermatogênico. A localização de ambos os receptores na porção apical das células epiteliais e no músculo liso dos ductos deferentes de rato sugere um papel na contração e na regulação da secreção.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Universidade Federal de São Paulo (UNIFESP) Escola Paulista de Medicina Departamento de FarmacologiaUNIFESP, EPM, Depto. de FarmacologiaSciEL

    Expression and function of G-protein-coupled receptorsin the male reproductive tract

    Full text link

    Protein quality control: the who’s who, the where’s and therapeutic escapes

    Get PDF
    In cells the quality of newly synthesized proteins is monitored in regard to proper folding and correct assembly in the early secretory pathway, the cytosol and the nucleoplasm. Proteins recognized as non-native in the ER will be removed and degraded by a process termed ERAD. ERAD of aberrant proteins is accompanied by various changes of cellular organelles and results in protein folding diseases. This review focuses on how the immunocytochemical labeling and electron microscopic analyses have helped to disclose the in situ subcellular distribution pattern of some of the key machinery proteins of the cellular protein quality control, the organelle changes due to the presence of misfolded proteins, and the efficiency of synthetic chaperones to rescue disease-causing trafficking defects of aberrant proteins
    corecore