22 research outputs found

    Effect of Heterogeneous Mixing and Vaccination on the Dynamics of Anthelmintic Resistance: A Nested Model

    Get PDF
    Anthelmintic resistance is a major threat to current measures for helminth control in humans and animals. The introduction of anthelmintic vaccines, as a complement to or replacement for drug treatments, has been advocated as a preventive measure. Here, a computer-based simulation, tracking the dynamics of hosts, parasites and parasite-genes, shows that, depending on the degree of host-population mixing, the frequency of totally recessive autosomes associated with anthelmintic resistance can follow either a fast dynamical regime with a low equilibrium point or a slow dynamical regime with a high equilibrium point. For fully dominant autosomes, only one regime is predicted. The effectiveness of anthelminthic vaccines against resistance is shown to be strongly influenced by the underlying dynamics of resistant autosomes. Vaccines targeting adult parasites, by decreasing helminth fecundity or lifespan, are predicted to be more effective than vaccines targeting parasite larvae, by decreasing host susceptibility to infection, in reducing the spread of resistance. These results may inform new strategies to prevent, monitor and control the spread of anthelmintic resistance, including the development of viable anthelmintic vaccines

    The Adjuvanticity of an O. volvulus-Derived rOv-ASP-1 Protein in Mice Using Sequential Vaccinations and in Non-Human Primates

    Get PDF
    Adjuvants potentiate antigen-specific protective immune responses and can be key elements promoting vaccine effectiveness. We previously reported that the Onchocerca volvulus recombinant protein rOv-ASP-1 can induce activation and maturation of naïve human DCs and therefore could be used as an innate adjuvant to promote balanced Th1 and Th2 responses to bystander vaccine antigens in mice. With a few vaccine antigens, it also promoted a Th1-biased response based on pronounced induction of Th1-associated IgG2a and IgG2b antibody responses and the upregulated production of Th1 cytokines, including IL-2, IFN-γ, TNF-α and IL-6. However, because it is a protein, the rOv-ASP-1 adjuvant may also induce anti-self-antibodies. Therefore, it was important to verify that the host responses to self will not affect the adjuvanticity of rOv-ASP-1 when it is used in subsequent vaccinations with the same or different vaccine antigens. In this study, we have established rOv-ASP-1's adjuvanticity in mice during the course of two sequential vaccinations using two vaccine model systems: the receptor-binding domain (RBD) of SARS-CoV spike protein and a commercial influenza virus hemagglutinin (HA) vaccine comprised of three virus strains. Moreover, the adjuvanticity of rOv-ASP-1 was retained with an efficacy similar to that obtained when it was used for a first vaccination, even though a high level of anti-rOv-ASP-1 antibodies was present in the sera of mice before the administration of the second vaccine. To further demonstrate its utility as an adjuvant for human use, we also immunized non-human primates (NHPs) with RBD plus rOv-ASP-1 and showed that rOv-ASP-1 could induce high titres of functional and protective anti-RBD antibody responses in NHPs. Notably, the rOv-ASP-1 adjuvant did not induce high titer antibodies against self in NHPs. Thus, the present study provided a sound scientific foundation for future strategies in the development of this novel protein adjuvant

    Schistosoma mansoni Venom Allergen Like Proteins Present Differential Allergic Responses in a Murine Model of Airway Inflammation

    Get PDF
    The Schistosoma mansoni Venom Allergen Like proteins (SmVALs) have been identified in the Transcriptome and Post-Genomic studies as targets for immune interventions. Two secreted members of the family were obtained as recombinant proteins in the native conformation. Antibodies produced against them showed that SmVAL4 was present mostly in cercarial secretions and SmVAL26 in egg secretions and that only the native SmVAL4 contained carbohydrate moieties. Due to concerns with potential allergic characteristics of this class of molecules, we have explored the mouse model of airway inflammation in order to investigate these properties in a more confined system. Sensitization and challenge with rSmVAL4, but not rSmVAL26, induced extensive migration of cells to the lungs, mostly eosinophils and macrophages; moreover, immunological parameters were also characteristic of an allergic inflammatory response. Our results showed that the allergic potential of this class of proteins can be variable and that the vaccine candidates should be characterized; the mouse model of airway inflammation can be useful to evaluate these properties

    Massively Parallel Sequencing and Analysis of the Necator americanus Transcriptome

    Get PDF
    The blood-feeding hookworm Necator americanus infects hundreds of millions of people. To elucidate fundamental molecular biological aspects of this hookworm, the transcriptome of adult Necator americanus was studied using next-generation sequencing and in silico analyses. Contigs (n = 19,997) were assembled from the sequence data; 6,771 of them had known orthologues in the free-living nematode Caenorhabditis elegans, and most encoded proteins with WD40 repeats (10.6%), proteinase inhibitors (7.8%) or calcium-binding EF-hand proteins (6.7%). Bioinformatic analyses inferred that C. elegans homologues are involved mainly in biological pathways linked to ribosome biogenesis (70%), oxidative phosphorylation (63%) and/or proteases (60%). Comparative analyses of the transcriptomes of N. americanus and the canine hookworm, Ancylostoma caninum, revealed qualitative and quantitative differences. Essential molecules were predicted using a combination of orthology mapping and functional data available for C. elegans. Further analyses allowed the prioritization of 18 predicted drug targets which did not have human homologues. These candidate targets were inferred to be linked to mitochondrial metabolism or amino acid synthesis. This investigation provides detailed insights into the transcriptome of the adult stage of N. americanus

    Characterisation of Dermanyssus gallinae glutathione S-transferases and their potential as acaricide detoxification proteins

    Get PDF
    BACKGROUND: Glutathione S-transferases (GSTs) facilitate detoxification of drugs by catalysing the conjugation of the reduced glutathione (GSH) to electrophilic xenobiotic substrates and therefore have a function in multi-drug resistance. As a result, knowledge of GSTs can inform both drug resistance in, and novel interventions for, the control of endo- and ectoparasite species. Acaricide resistance and the need for novel control methods are both pressing needs for Dermanyssus gallinae, a highly economically important haematophagous ectoparasite of poultry. METHODS: A transcriptomic database representing D. gallinae was examined and 11 contig sequences were identified with GST BlastX identities. The transcripts represented by 3 contigs, designated Deg-GST-1, −2 and −3, were fully sequenced and further characterized by phylogenetic analysis. Recombinant versions of Deg-GST-1, −2 and −3 (rDeg-GST) were enzymically active and acaricide-binding properties of the rDeg-GSTs were established by evaluating the ability of selected acaricides to inhibit the enzymatic activity of rDeg-GSTs. RESULTS: 6 of the identified GSTs belonged to the mu class, followed by 3 kappa, 1 omega and 1 delta class molecules. Deg-GST-1 and −3 clearly partitioned with orthologous mu class GSTs and Deg-GST-2 partitioned with delta class GSTs. Phoxim, permethrin and abamectin significantly inhibited rDeg-GST-1 activity by 56, 35 and 17 % respectively. Phoxim also inhibited rDeg-2-GST (14.8 %) and rDeg-GST-3 (20.6 %) activities. CONCLUSIONS: Deg-GSTs may have important roles in the detoxification of pesticides and, with the increased occurrence of acaricide resistance in this species worldwide, Deg-GSTs are attractive targets for novel interventions

    The genomic basis of parasitism in the Strongyloides clade of nematodes.

    Get PDF
    Soil-transmitted nematodes, including the Strongyloides genus, cause one of the most prevalent neglected tropical diseases. Here we compare the genomes of four Strongyloides species, including the human pathogen Strongyloides stercoralis, and their close relatives that are facultatively parasitic (Parastrongyloides trichosuri) and free-living (Rhabditophanes sp. KR3021). A significant paralogous expansion of key gene families--families encoding astacin-like and SCP/TAPS proteins--is associated with the evolution of parasitism in this clade. Exploiting the unique Strongyloides life cycle, we compare the transcriptomes of the parasitic and free-living stages and find that these same gene families are upregulated in the parasitic stages, underscoring their role in nematode parasitism
    corecore