7 research outputs found

    Effects of olive oil and its minor phenolic constituents on obesity-induced cardiac metabolic changes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Olive oil and its minor constituents have been recommended as important dietary therapeutic interventions in preventive medicine. However, a question remains to be addressed: what are the effects of olive oil and its phenolic compounds on obesity-induced cardiac metabolic changes?</p> <p>Methods</p> <p>Male Wistar rats were divided into two groups (<it>n </it>= 24/group): (C) receiving standard-chow; (Ob) receiving hypercaloric-chow. After 21 days C and Ob groups were divided into four subgroups (<it>n </it>= 6/group):(C) standard-chow and saline; (C-Olive)standard-chow and olive-oil (3.0 g/kg.day); (C-Oleuropein)standard-chow and oleuropein (0.023 mg/kg/day); (C-Cafeic) standard-chow and cafeic-acid (2.66 mg/kg/day); (Ob)receiving hypercaloric-chow and saline;(Ob-Olive) hypercaloric-chow and olive-oil;(Ob-Oleuropein) hypercaloric-chow and oleuropein;(Ob-Cafeic) hypercaloric-chow and cafeic-acid. Treatments were given twice a week during 21 days.</p> <p>Results</p> <p>After 42 days, obesity was evidenced in Ob rats from enhanced body-weight, surface-area, and body-mass-index. Energy-expenditure, oxygen consumption(VO<sub>2</sub>) and fat-oxidation were lower in Ob-group than in C. Despite no morphometric changes, Ob-Olive, Ob-Oleuropein and Ob-Cafeic groups had higher VO<sub>2</sub>, fat-oxidation, myocardial beta-hydroxyacyl coenzyme-A dehydrogenase and lower respiratory-quotient than Ob. Citrate-synthase was highest in Ob-Olive group. Myocardial lipid-hydroperoxide(LH) and antioxidant enzymes were unaffected by olive-oil and its compounds in obesity condition, whereas LH was lower and total-antioxidant-substances were higher in C-Olive and C-Oleuropein than in C.</p> <p>Conclusions</p> <p>The present study demonstrated for the first time that olive-oil, oleuropein and cafeic-acid enhanced fat-oxidation and optimized cardiac energy metabolism in obesity conditions. Olive oil and its phenolic compounds improved myocardial oxidative stress in standard-fed conditions.</p

    Detecting semantic social engineering attacks with the weakest link: Implementation and empirical evaluation of a human-as-a-security-sensor framework

    Get PDF
    The notion that the human user is the weakest link in information security has been strongly, and, we argue, rightly contested in recent years. Here, we take a step further showing that the human user can in fact be the strongest link for detecting attacks that involve deception, such as application masquerading, spearphishing, WiFi evil twin and other types of semantic social engineering. Towards this direction, we have developed a human-as-a-security-sensor framework and a practical implementation in the form of Cogni-Sense, a Microsoft Windows prototype application, designed to allow and encourage users to actively detect and report semantic social engineering attacks against them. Experimental evaluation with 26 users of different profiles running Cogni-Sense on their personal computers for a period of 45 days has shown that human sensors can consistently outperform technical security systems. Making use of a machine learning based approach, we also show that the reliability of each report, and consequently the performance of each human sensor, can be predicted in a meaningful and practical manner. In an organisation that employs a human-as-a-security-sensor implementation, such as Cogni-Sense, an attack is considered to have been detected if at least one user has reported it. In our evaluation, a small organisation consisting only of the 26 participants of the experiment would have exhibited a missed detection rate below 10%, down from 81% if only technical security systems had been used. The results strongly point towards the need to actively involve the user not only in prevention through cyber hygiene and user-centric security design, but also in active cyber threat detection and reporting
    corecore