466 research outputs found

    Female urogenital dysfunction following total mesorectal excision for rectal cancer

    Get PDF
    BACKGROUND: The effect of Total Mesorectal Excision (TME) on sexual function in the male is well documented. However, there is little literature in female patients. The aim of this study was to review the pelvic autonomic nervous anatomy in the female and to perform a retrospective audit of urinary and sexual function in women following surgery for rectal cancer where TME had been performed. Urogenital dysfunction was assessed through interview and questionnaire. METHOD: Twenty-three questionnaires, eighteen returned, were sent to women with a mean age 65.5 yrs (range 34–86). All had undergone total mesorectal excision for rectal cancer between 1998–2001. Mean follow-up was 18.8 months (range 3–35). RESULTS: Preoperatively 5/18 (28%) were sexually active, 3/18 (17%) of patients described urinary frequency and nocturia and 7/18 (39%) described symptoms of stress incontinence prior to surgery. Postoperatively all sexually active patients remained active although all described some discomfort with penetration. Two of the patients sexually active described reduced libido secondary to the stoma. Postoperative urinary symptoms developed with 59% reporting the development of nocturia, 18% developed stress incontinence and one patient required a permanent catheter. Of those with symptoms, 80% persisted longer than three months from surgery. Symptoms were predominant in those patients with low rectal cancers, particularly those undergoing abdomino-perineal excision and in those who had previously undergone abdominal hysterectomy. CONCLUSION: The treatment of rectal cancer involves surgery to the pelvic floor. Despite nerve preservation this is associated with the development of worsening nocturia and stress incontinence. This is most marked in those patients who had previously undergone a hysterectomy. Further studies are warranted to assess the interaction with previous gynaecological surgery

    Radium-228-derived ocean mixing and trace element inputs in the South Atlantic

    Get PDF
    Trace elements (TEs) play important roles as micronutrients in modulating marine productivity in the global ocean. The South Atlantic around 40◦S is a prominent region of high productivity and a transition zone between the nitrate-depleted subtropical gyre and the iron-limited Southern Ocean. However, the sources and fluxes of trace elements to this region remain unclear. In this study, the distribution of the naturally occurring radioisotope 228Ra in the water column of the South Atlantic (Cape Basin and Argentine Basin) has been investigated along a 40◦S zonal transect to estimate ocean mixing and trace element supply to the surface ocean. Ra-228 profiles have been used to determine the horizontal and vertical mixing rates in the near-surface open ocean. In the Argentine Basin, horizontal mixingfromthecontinentalshelftotheopenoceanshowsan eddy diffusion of Kx =1.8±1.4 (106 cm2 s−1) and an integrated advection velocity w=0.6±0.3cms−1. In the Cape Basin, horizontal mixing is Kx =2.7±0.8 (107 cm2 s−1) andverticalmixing Kz=1.0–1.7cm2 s−1 intheupper600m layer. Three different approaches (228Ra diffusion, 228Ra advection, and 228Ra/TE ratio) have been applied to estimate the dissolved trace element fluxes from the shelf to the open ocean. These approaches bracket the possible range of off-shelf fluxes from the Argentine Basin margin to be 4–21 (×103)nmolCom−2 d−1, 8–19 (×104)nmolFem−2 d−1 and 2.7–6.3 (×104)nmolZnm−2 d−1. Off-shelf fluxes from the Cape Basin margin are 4.3–6.2 (×103)nmolCom−2 d−1, 1.2–3.1 (×104)nmolFem−2 d−1, and 0.9–1.2 (×104)nmolZnm−2 d−1. On average, at 40◦S in the Atlantic, vertical mixing supplies 0.1– 1.2nmolCom−2 d−1, 6–9nmolFem−2 d−1, and 5– 7nmolZnm−2 d−1 to the euphotic zone. Compared with atmospheric dust and continental shelf inputs, vertical mixing is a more important source for supplying dissolved trace elements to the surface 40◦S Atlantic transect. It is insufficient, however, to provide the trace elements removed by biological uptake, particularly for Fe. Other inputs (e.g. particulate or from winter deep mixing) are required to balance the trace element budgets in this region

    Hydrophobic and metallophobic surfaces: Highly stable non-wetting inorganic surfaces based on lanthanum phosphate nanorods

    Get PDF
    Metal oxides, in general, are known to exhibit significant wettability towards water molecules because of the high feasibility of synergetic hydrogen-bonding interactions possible at the solid-water interface. Here we show that the nano sized phosphates of rare earth materials (Rare Earth Phosphates, REPs), LaPO 4 in particular, exhibit without any chemical modification, unique combination of intrinsic properties including remarkable hydrophobicity that could be retained even after exposure to extreme temperatures and harsh hydrothermal conditions. Transparent nanocoatings of LaPO 4 as well as mixture of other REPs on glass surfaces are shown to display notable hydrophobicity with water contact angle (WCA) value of 120° while sintered and polished monoliths manifested WCA greater than 105°. Significantly, these materials in the form of coatings and monoliths also exhibit complete non-wettability and inertness towards molten metals like Ag, Zn, and Al well above their melting points. These properties, coupled with their excellent chemical and thermal stability, ease of processing, machinability and their versatile photo-physical and emission properties, render LaPO 4 and other REP ceramics utility in diverse applications

    The Ontogenetic Osteohistology of Tenontosaurus tilletti

    Get PDF
    Tenontosaurus tilletti is an ornithopod dinosaur known from the Early Cretaceous (Aptian-Albian) Cloverly and Antlers formations of the Western United States. It is represented by a large number of specimens spanning a number of ontogenetic stages, and these specimens have been collected across a wide geographic range (from central Montana to southern Oklahoma). Here I describe the long bone histology of T. tilletti and discuss histological variation at the individual, ontogenetic and geographic levels. The ontogenetic pattern of bone histology in T. tilletti is similar to that of other dinosaurs, reflecting extremely rapid growth early in life, and sustained rapid growth through sub-adult ontogeny. But unlike other iguanodontians, this dinosaur shows an extended multi-year period of slow growth as skeletal maturity approached. Evidence of termination of growth (e.g., an external fundamental system) is observed in only the largest individuals, although other histological signals in only slightly smaller specimens suggest a substantial slowing of growth later in life. Histological differences in the amount of remodeling and the number of lines of arrested growth varied among elements within individuals, but bone histology was conservative across sampled individuals of the species, despite known paleoenvironmental differences between the Antlers and Cloverly formations. The bone histology of T. tilletti indicates a much slower growth trajectory than observed for other iguanodontians (e.g., hadrosaurids), suggesting that those taxa reached much larger sizes than Tenontosaurus in a shorter time

    Achieving In Vivo Target Depletion through the Discovery and Optimization of Benzimidazolone BCL6 Degraders.

    Get PDF
    Deregulation of the transcriptional repressor BCL6 enables tumorigenesis of germinal center B-cells, and hence BCL6 has been proposed as a therapeutic target for the treatment of diffuse large B-cell lymphoma (DLBCL). Herein we report the discovery of a series of benzimidazolone inhibitors of the protein-protein interaction between BCL6 and its co-repressors. A subset of these inhibitors were found to cause rapid degradation of BCL6, and optimization of pharmacokinetic properties led to the discovery of 5-((5-chloro-2-((3R,5S)-4,4-difluoro-3,5-dimethylpiperidin-1-yl)pyrimidin-4-yl)amino)-3-(3-hydroxy-3-methylbutyl)-1-methyl-1,3-dihydro-2H-benzo[d]imidazol-2-one (CCT369260), which reduces BCL6 levels in a lymphoma xenograft mouse model following oral dosing

    The Role of Phe82 and Phe351 in Auxin-Induced Substrate Perception by TIR1 Ubiquitin Ligase: A Novel Insight from Molecular Dynamics Simulations

    Get PDF
    It is well known that Auxin plays a key role in controlling many aspects of plant growth and development. Crystal structures of Transport inhibitor response 1 (TIR1), a true receptor of auxin, were very recently determined for TIR1 alone and in complexes with auxin and different synthetic analogues and an Auxin/Indole-3-Acetic Acid (Aux/IAA) substrate peptide. However, the dynamic conformational changes of the key residues of TIR1 that take place during the auxin and substrate perception by TIR1 and the detailed mechanism of these changes are still unclear. In the present study, various computational techniques were integrated to uncover the detailed molecular mechanism of the auxin and Aux/IAA perception process; these simulations included molecular dynamics (MD) simulations on complexes and the free enzyme, the molecular mechanics Poisson Boltzmann surface area (MM-PBSA) calculations, normal mode analysis, and hydrogen bond energy (HBE) calculations. The computational simulation results provided a reasonable explanation for the structure-activity relationships of auxin and its synthetic analogues in view of energy. In addition, a more detailed model for auxin and Aux/IAA perception was also proposed, indicating that Phe82 and Phe351 played a pivotal role in Aux/IAA perception. Upon auxin binding, Phe82 underwent conformational changes to accommodate the subsequent binding of Aux/IAA. As a result, auxin enhances the TIR1-Aux/IAA interactions by acting as a “molecular glue”. Besides, Phe351 acts as a “fastener” to further improve the substrate binding. The structural and mechanistic insights obtained from the present study will provide valuable clues for the future design of promising auxin analogues

    Growth Dynamics of Australia's Polar Dinosaurs

    Get PDF
    Analysis of bone microstructure in ornithopod and theropod dinosaurs from Victoria, Australia, documents ontogenetic changes, providing insight into the dinosaurs' successful habitation of Cretaceous Antarctic environments. Woven-fibered bone tissue in the smallest specimens indicates rapid growth rates during early ontogeny. Later ontogeny is marked by parallel-fibered tissue, suggesting reduced growth rates approaching skeletal maturity. Bone microstructure similarities between the ornithopods and theropods, including the presence of LAGs in each group, suggest there is no osteohistologic evidence supporting the hypothesis that polar theropods hibernated seasonally. Results instead suggest high-latitude dinosaurs had growth trajectories similar to their lower-latitude relatives and thus, rapid early ontogenetic growth and the cyclical suspensions of growth inherent in the theropod and ornithopod lineages enabled them to successfully exploit polar regions

    Dietary Supplementation with Probiotics Improves Hematopoiesis in Malnourished Mice

    Get PDF
    BACKGROUND: Lactobacillus rhamnosus CRL1505 (Lr) administered during the repletion of immunocompromised-malnourished mice improves the resistance against intestinal and respiratory infections. This effect is associated with an increase in the number and functionality of immune cells, indicating that Lr could have some influence on myeloid and lymphoid cell production and maturation. OBJECTIVE: This study analyzed the extent of the damage caused by malnutrition on myeloid and lymphoid cell development in the spleen and bone marrow (BM). We also evaluated the impact of immunobiotics on the recovery of hematopoiesis affected in malnourished mice. METHODS: Protein malnourished mice were fed on a balanced conventional diet for 7 or 14 consecutive d with or without supplemental Lr or fermented goat's milk (FGM). Malnourished mice and well-nourished mice were used as controls. Histological and flow cytometry studies were carried out in BM and spleen to study myeloid and lymphoid cells. RESULTS: Malnutrition induced quantitative alterations in spleen B and T cells; however, no alteration was observed in the ability of splenic B cells to produce immunoglobulins after challenge with LPS or CpG. The analysis of BM B cell subsets based on B220, CD24, IgM and IgD expression showed that malnutrition affected B cell development. In addition, BM myeloid cells decreased in malnourished mice. On the contrary, protein deprivation increased BM T cell number. These alterations were reverted with Lr or FGM repletion treatments since normal numbers of BM myeloid, T and B cells were observed in these groups. CONCLUSIONS: Protein malnutrition significantly alters B cell development in BM. The treatment of malnourished mice with L. rhamnosus CRL1505 was able to induce a recovery of B cells that would explain its ability to increase immunity against infections. This work highlights the possibility of using immunobiotics to accelerate the recovery of lymphopoyesis in immunocompromised-malnourished hosts
    corecore