15 research outputs found

    Constraining exoplanet metallicities and aerosols with the contribution to ARIEL spectroscopy of exoplanets (CASE)

    No full text
    Launching in 2028, ESA’s 0.64 m2 Atmospheric Remote-sensing Exoplanet Large-survey (ARIEL) survey of ∌1000 transiting exoplanets will build on the legacies of NASA’s Kepler and Transiting Exoplanet Survey Satellite (TESS), and complement the James Webb Space Telescope (JWST) by placing its high-precision exoplanet observations into a large, statistically significant planetary population context. With continuous 0.5–7.8 ÎŒm coverage from both FGS (0.5–0.6, 0.6–0.81, and 0.81–1.1 ÎŒm photometry; 1.1–1.95 ÎŒm spectroscopy) and AIRS (1.95–7.80 ÎŒm spectroscopy), ARIEL will determine atmospheric compositions and probe planetary formation histories during its 3.5 yr mission. NASA’s proposed Contribution to ARIEL Spectroscopy of Exoplanets (CASE) would be a subsystem of ARIEL’s Fine Guidance Sensor (FGS) instrument consisting of two visible-to-infrared detectors, associated readout electronics, and thermal control hardware. FGS, to be built by the Polish Academy of Sciences Space Research Centre, will provide both fine guiding and visible to near-infrared photometry and spectroscopy, providing powerful diagnostics of atmospheric aerosol contribution and planetary albedo, which play a crucial role in establishing planetary energy balance. The CASE team presents here an independent study of the capabilities of ARIEL to measure exoplanetary metallicities, which probe the conditions of planet formation, and FGS to measure scattering spectral slopes, which indicate if an exoplanet has atmospheric aerosols (clouds and hazes), and geometric albedos, which help establish planetary climate. Our simulations assume that ARIEL’s performance will be 1.3×the photon-noise limit. This value is motivated by current transiting exoplanet observations: Spitzer/IRAC and Hubble/WFC3 have empirically achieved 1.15×the photon-noise limit. One could expect similar performance from ARIEL, JWST, and other proposed future missions such as HabEx, LUVOIR, and Origins. Our design reference mission simulations show that ARIEL could measure the mass– metallicity relationship of its 1000-planet single-visit sample to >7.5σ and that FGS could distinguish between clear, cloudy, and hazy skies and constrain an exoplanet’s atmospheric aerosol composition to ≳5σ for hundreds of targets, providing statistically transformative science for exoplanet atmospheres

    Stellar Activity

    No full text

    Identification of carbon dioxide in an exoplanet atmosphere

    Get PDF
    Carbon dioxide (CO2) is a key chemical species that is found in a wide range of planetary atmospheres. In the context of exoplanets, CO2 is an indicator of the metal enrichment (i.e., elements heavier than helium, also called "metallicity"), and thus formation processes of the primary atmospheres of hot gas giants. It is also one of the most promising species to detect in the secondary atmospheres of terrestrial exoplanets. Previous photometric measurements of transiting planets with the Spitzer Space Telescope have given hints of the presence of CO2 but have not yielded definitive detections due to the lack of unambiguous spectroscopic identification. Here we present the detection of CO2 in the atmosphere of the gas giant exoplanet WASP-39b from transmission spectroscopy observations obtained with JWST as part of the Early Release Science Program (ERS). The data used in this study span 3.0 to 5.5 {\mu}m in wavelength and show a prominent CO2 absorption feature at 4.3 {\mu}m (26{\sigma} significance). The overall spectrum is well matched by one-dimensional, 10x solar metallicity models that assume radiative-convective-thermochemical equilibrium and have moderate cloud opacity. These models predict that the atmosphere should have water, carbon monoxide, and hydrogen sulfide in addition to CO2, but little methane. Furthermore, we also tentatively detect a small absorption feature near 4.0 {\mu}m that is not reproduced by these models
    corecore