110 research outputs found

    Understanding functional group and assembly dynamics in temperature responsive systems leads to design principles for enzyme responsive assemblies

    Get PDF
    Understanding the molecular rules behind the dynamics of supramolecular assemblies is fundamentally important for the rational design of responsive assemblies with tunable properties. Herein, we report that the dynamics of temperature-sensitive supramolecular assemblies is not only affected by the dehydration of oligoethylene glycol (OEG) motifs, but also by the thermally-promoted molecular motions. These counteracting features set up a dynamics transition point (DTP) that can be modulated with subtle variations in a small hydrophobic patch on the hydrophilic face of the amphiphilic assembly. Understanding the structural factors that control the dynamics of the assemblies leads to rational design of enzyme-responsive assemblies with tunable temperature responsive profiles

    Dendrimer-Based Fluorescent Indicators: In Vitro and In Vivo Applications

    Get PDF
    BACKGROUND: The development of fluorescent proteins and synthetic molecules whose fluorescence properties are controlled by the environment makes it possible to monitor physiological and pathological events in living systems with minimal perturbation. A large number of small organic dyes are available and routinely used to measure biologically relevant parameters. Unfortunately their application is hindered by a number of limitations stemming from the use of these small molecules in the biological environment. PRINCIPAL FINDINGS: We present a novel dendrimer-based architecture leading to multifunctional sensing elements that can overcome many of these problems. Applications in vitro, in living cells and in vivo are reported. In particular, we image for the first time extracellular pH in the brain in a mouse epilepsy model. CONCLUSION: We believe that the proposed architecture can represent a useful and novel tool in fluorescence imaging that can be widely applied in conjunction with a broad range of sensing dyes and experimental setups

    Non-uniform Photoinduced Unfolding of Supramolecular Polymers Leading to Topological Block Nanofibers.

    Get PDF
    Synthesis of one-dimensional nanofibers with distinct topological (higher-order structural) domains in the same main chain is one of the challenging topics in modern supramolecular polymer chemistry. Non-uniform structural transformation of supramolecular polymer chains by external stimuli may enable preparation of such nanofibers. To demonstrate feasibility of this post-polymerization strategy, we prepared a photoresponsive helically folded supramolecular polymers from a barbiturate monomer containing an azobenzene-embedded rigid pi-conjugated scaffold. In contrast to previous helically folded supramolecular polymers composed of a more flexible azobenzene monomer, UV-light induced unfolding of the newly prepared helically folded supramolecular polymers occurred nonuniformly, affording topological block copolymers consisting of folded and unfolded domains. The formation of such blocky copolymers indicates that the photoinduced unfolding of the helically folded structures initiates from relatively flexible parts such as termini or defects. Spontaneous refolding of the unfolded domains was observed after visible-light irradiation followed by aging to restore fully folded structures

    Self-assembled poly-catenanes from supramolecular toroidal building blocks

    Get PDF
    Mechanical interlocking of molecules (catenation) is a nontrivial challenge in modern synthetic chemistry and materials science1,2. One strategy to achieve catenation is the design of pre-annular molecules that are capable of both efficient cyclization and of pre-organizing another precursor to engage in subsequent interlocking3,4,5,6,7,8,9. This task is particularly difficult when the annular target is composed of a large ensemble of molecules, that is, when it is a supramolecular assembly. However, the construction of such unprecedented assemblies would enable the visualization of nontrivial nanotopologies through microscopy techniques, which would not only satisfy academic curiosity but also pave the way to the development of materials with nanotopology-derived properties. Here we report the synthesis of such a nanotopology using fibrous supramolecular assemblies with intrinsic curvature. Using a solvent-mixing strategy, we kinetically organized a molecule that can elongate into toroids with a radius of about 13 nanometres. Atomic force microscopy on the resulting nanoscale toroids revealed a high percentage of catenation, which is sufficient to yield ‘nanolympiadane’10, a nanoscale catenane composed of five interlocked toroids. Spectroscopic and theoretical studies suggested that this unusually high degree of catenation stems from the secondary nucleation of the precursor molecules around the toroids. By modifying the self-assembly protocol to promote ring closure and secondary nucleation, a maximum catenation number of 22 was confirmed by atomic force microscopy

    Attenuation of Toll-Like Receptor Expression and Function in Latent Tuberculosis by Coexistent Filarial Infection with Restoration Following Antifilarial Chemotherapy

    Get PDF
    Mycobacterium tuberculosis (Mtb) and filarial coinfection is highly prevalent, and the presence of filarial infections may regulate the Toll-like receptor (TLR)-dependent immune response needed to control Mtb infection. By analyzing the baseline and mycobacterial antigen–stimulated expression of TLR1, 2, 4, and 9 (in individuals with latent tuberculosis [TB] with or without filarial infection), we were able to demonstrate that filarial infection, coincident with Mtb, significantly diminishes both baseline and Mtb antigen-specific TLR2 and TLR9 expression. In addition, pro-inflammatory cytokine responses to TLR2 and 9 ligands are significantly diminished in filaria/TB-coinfected individuals. Definitive treatment of lymphatic filariasis significantly restores the pro-inflammatory cytokine responses in individuals with latent TB. Coincident filarial infection exerted a profound inhibitory effect on protective mycobacteria-specific TLR-mediated immune responses in latent tuberculosis and suggests a novel mechanism by which concomitant filarial infections predispose to the development of active tuberculosis in humans

    Quantitative RT-PCR profiling of the Rabbit Immune Response: Assessment of Acute Shigella flexneri Infection

    Get PDF
    Quantitative reverse transcription PCR analysis is an important tool to monitor changes in gene expression in animal models. The rabbit is a widely accepted and commonly used animal model in the study of human diseases and infections by viral, fungal, bacterial and protozoan pathogens. Only a limited number of rabbit genes have, however, been analyzed by this method as the rabbit genome sequence remains unfinished. Recently, increasing coverage of the genome has permitted the prediction of a growing number of genes that are relevant in the context of the immune response. We hereby report the design of twenty-four quantitative PCR primer pairs covering common cytokines, chemoattractants, antimicrobials and enzymes for a rapid, sensitive and quantitative analysis of the rabbit immune response. Importantly, all primer pairs were designed to be used under identical experimental conditions, thereby enabling the simultaneous analysis of all genes in a high-throughput format. This tool was used to analyze the rabbit innate immune response to infection with the human gastrointestinal pathogen Shigella flexneri. Beyond the known inflammatory mediators, we identified IL-22, IL-17A and IL-17F as highly upregulated cytokines and as first responders to infection during the innate phase of the host immune response. This set of qPCR primers also provides a convenient tool for monitoring the rabbit immune response during infection with other pathogens and other inflammatory conditions
    • …
    corecore